Journal of Non-Crystalline Solids 117/118 (1990) 199-202 North-Holland
199
STRUCTURE AND PHASE TRANSFORMATIONS OF SPUTTERED Nb-Fe AND Nb-Co FILMS Hans-Ulrich Institut D-3400
KREBS, W o l f g a n g BIEGEL, RUdiger BORMANN, and Ralf BUSCH
fur Metallphysik, Universit~t G 6 t t i n g e n , F. R. G e r m a n y
G6ttingen,
HospitalstraSe
3-5,
N b - F e and N b - C o thin films w e r e p r e p a r e d over a wide c o m p o s i t i o n range by t r i o d e - s p u t t e r i n g at r o o m t e m p e r a t u r e and at 3 0 0 °C, r e s p e c t i v e l y . The f i l m s w e r e i n v e s t i g a t e d by X - r a y m e a s u r e m e n t s and t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y in o r d e r to s t u d y the s t r u c t u r e and the f o r m a t i o n r a n g e of the d i f f e r e n t phases. The r e s u l t s w e r e c o m p a r e d with Gibbs f r e e e n e r g y c u r v e s of the a m o r p h o u s and the e q u i l i b r i u m phases in the N b - C o s y s t e m c a l c u l a t e d by the calphad m e t h o d . C o n t r a r y to the liquid alloys rapidly q u e n c h e d / t h e s o l u b i l i t y of the t e r m i n a l phases p r e p a r e d by s p u t t e r i n g is not enhanced up to t h e i r m a x i m u m value. The e x t e n s i o n of the solid s o l u t i o n N_bbFed e c r e a s e s f o r higher s u b s t r a t e t e m p e r a t u r e s . For N b a o F e 2 o the t r a n s f o r m a t i o n into the m e t a s t a b l e e q u i l i b r i u m b e t w e e n the a m o r p h o u s and the bcc solid s o l u t i o n was m o n i t o r e d by i n - s i t u X - r a y e x p e r i m e n t s . For the d e c r e a s e of the volume f r a c t i o n as well as f o r the F e - c o n c e n t r a t i o n of the N bFe g r a i n s we found s q a r e - r o o t of time l a w s .
I. INTRODUCTION
On some s a m p l e s i n - s i t u X - r a y e x p e r i m e n t s w e r e
A m o r p h o u s binary alloys can be p r e p a r e d by a
u n d e r t a k e n on a hot s t a g e under a vacuum b e t t e r
v a r i e t y of d i f f e r e n t m e t h o d s , f o r e x a m p l e by rapid
than 10 - 5 m b a r using a c o n s t a n t heating r a t e of
quenching f r o m the melt, by v a p o r d e p o s i t i o n or -
1.5 ° C / m i n . X - r a y scans w e r e p e r f o r m e d e v e r y 6
since r e c e n t y e a r s - by s o l i d - s t a t e a m o r p h i z a t i o n
minutes.
first
m e n t s w e r e done at high t e m p e r a t u r e s up to 8 5 0 °C.
reported
by S c h w a r z
and Johnson 1. It
is
In a d d i t i o n , i s o t h e r m a l
X-ray
measure-
i n t e r e s t i n g to s t u d y the r a n g e of f o r m a t i o n of the
For the N b - C o s y s t e m the f r e e e n e r g y of the
d i f f e r e n t phases and t h e i r t r a n s f o r m a t i o n s into the
m e t a s t a b l e and s t a b l e phases and the e q u i l i b r i a
thermodynamic
between
equilibrium.
Here
we
describe
them
were
determined
by the
calphad
r e s u l t s on s p u t t e r e d N b - F e and N b - C o thin films
method ( c a l c u l a t i o n of phase d i a g r a m s ) 2,3. T h e r e b y
and c o m p a r e the f o r m a t i o n r a n g e of the a m o r p h o u s
the t h e r m o d y n a m i c f u n c t i o n s of the m e t a s t a b l e and
and the solid s o l u t i o n phases with t h o s e p r e d i c t e d
s t a b l e phases a r e c a l c u l a t e d by using the e x p e r i -
by c a l c u l a t e d f r e e e n e r g y c u r v e s .
mental t h e r m o d y n a m i c
data of the alloy s y s t e m .
The a m o r p h o u s phase is t r e a t e d as an u n d e r c o o l e d 2. EXPERIMENTAL PROCEDURES
liquid at the glass t r a n s i t i o n .
N b - F e and N b - C o thin films with a t h i c k n e s s of about 1 ~m w e r e d e p o s i t e d on A I 2 0 3 or KBr s u b s t r a t e s by t r i o d e s p u t t e r i n g
in a vacuum s y s t e m
3. RESULTS AND D I S C U S S I O N As
confirmed
by
X-ray
measurements
the
with a base p r e s s u r e of about 10 - 8 mbar. W h e r e -
s p u t t e r e d N b - F e and N b - C o films
as most of the f i l m s w e r e p r e p a r e d at r o o m t e m -
a m o r p h o u s phase and the t e r m i n a l s o l u t i o n s .
p e r a t u r e , some F e - p o o r N b - F e films w e r e s p u t t e -
i n t e r m e t a l l i c c o m p o u n d s could be d e t e c t e d even f o r
r e d at a s u b s t r a t e t e m p e r a t u r e of 3 0 0 °C.
the s u b s t r a t e t e m p e r a t u r e of 3 0 0 °C. Fig. 1 s u m m a -
The c o n c e n t r a t i o n of the f i l m s was m e a s u r e d by
rizes
the r e s u l t s
of
the
c o n s i s t of the
structural
analyses
No
of
e l e c t r o n m i c r o p r o b e analysis. A f t e r d i s s o l v i n g the
N b l o o _ x F e X films s p u t t e r e d at room t e m p e r a t u r e
KBr s u b s t r a t e s
o v e r the c o m p o s i t i o n
transmission
some films w e r e
electron
microscopy
investigated
by
experiments.
0022-3093/90/$03.50 (~) Elsevier Science Publishers B.V. (North-Holland)
range of 8 " x " g 3
at.X
Fe.
Pure N b - f i l m s and films with low Fe c o n c e n t r a t i o n
H.-U. Krebs et al./Sputtered Nb-Fe and Nb-Co films
200
between 77 and 88 at.X Fe. For higher Fe contents I I
44
• crystalline o amorphous
I I
the peak position of the (110) r e f l e x for the bcc-F_eeNb phase linearly increases. The lattice p a r a m e t e r of
I
the pure Fe film (2.864 ~,) agrees with the one
O) t..
~42
observed in bulk material. In o r d e r to study the influence of the s u b s t r a t e
CM
t e m p e r a t u r e on the f o r m a t i o n range of the b c c -
I
N bFe phase, F e - p o o r
films
with
concentrations
between 8 and 28 at.% Fe were also s p u t t e r e d at 3~
NbFe
I
'
IF--~eNb !FeNiE l,,am. - -
amorphous
N__bbFe + am.
I
2'o
I
4
I
I I
60
ment of the surface diffusion (during the p r e p a -
II
B0
lOO
x~bt.%)
Nb
300 °C. At this s u b s t r a t e t e m p e r a t u r e the enhance-
Fe
ration) reduces the extension of the N__bFe singlephase to about 11 at.% Fe. The concentration dependence of the d i f f e r e n t
FIGURE 1 Compositional ranges of the amorphous phase and of the crystalline terminal solutions for s p u t t e r e d NbFe films, determined by the position of the r e s p e c t i v e most intensive X - r a y peak
s t r u c t u r e s for Nb-Co films is similar to the results observed for the Nb-Fe films. As in Nb-Fe a t w o phase
region
between
the
bcc-NbCo
and
the
amorphous phase is observed for c o n c e n t r a t i o n s
are strongly t e x t u r e d and mainly show the (110)
from 16 to 30 at.X Co, However, the limits of the
peak in X - r a y
N b - p o o r t w o - p h a s e region are shifted to higher
position of this
measurements. peak
For pure
corresponds
to
Nb the
a lattice
C o - c o n t e n t (86 and 91 at,X Co, respectively),
O
constant of 3.315 A, which is about 0.15 ~, larger
For some of the samples the s t r u c t u r e and the
than in bulk Nb. Obviously the N b - r i c h thin films
m i c r o s t r u c t u r e of the films was analyzed by TEM
are less dense probably due to the rapid cooling 0
process
during
deposition.
With
increasing
,
.
'
i
.
.
.
.
J
.
.
.
.
+
'
'
'
Fe
c o n c e n t r a t i o n the l a t t i c e constant of the bcc N bFe phase linearly decreases with a rate of 0 . 0 0 4 6 O
A/at.XFe
up to
16 at.X Fe, in agreement
with
V e g a r d ' s law. Between 16 and 30 at.~ Fe a t w o -
q3
~-iO
phase region of the bcc-NbFe and an amorphous phase e x i s t s , indicated by a position of the (110) peak being independent of the c o n c e n t r a t i o n . The
NU-Co <3 -15
T=550° C
~ NbCo
NbC°3 NbCo2
upper limit of the t w o - p h a s e region is d e t e r m i n e d by the vanishing of the intensity of this peak+ Between 30 and 77 at.X Fe the Nb-Fe films are completely
0.25
0.50
0.75
1.00
Co - Concentration
amorphous. The position of the broad amorphous maximum linearly increases up to about 55 at.~ Fe with the same rate as the peak position of the crystalline bcc-NbFe phase. Between 55 and 60 at.% astepwiseincreaseoccurs, followedbyatwo-phase region of the amorphous and the bcc-FeNb phase
FIGURE 2 The free energy of the metastable and equilibrium phases at 650 °C. The f r e e energies of bcc Nb and fcc Co are chosen as energy r e f e r e n c e points. The t r a n s f o r m a t i o n of s u p e r s a t u r a t e d N__bCo into the metastable equilibrium between N bCo and the amorphous phase is marked
H.-U.
Krebs et al./ Sputtered Nb-Fe and Nb-Co films
201
at.X Co) and the a m o r p h o u s phase ( w i t h 42 at.X Co)
ZJ..2
is included. I.I,.C
An e x t e n s i o n of s u p e r s a t u r a t e d N__bbCoup to about
"•39f.
26 at.~ Fe was v e r i f i e d in bulk s a m p l e s p r e p a r e d
22
by a piston and anvil t e c h n i q u e 4, Under our p r e p a -
L cr= (3J
ration
,#
conditions
such a large e x t e n s i o n of
the
17
t e r m i n a l s o l u t i o n s and the a m o r p h o u s region is not 390
r e a c h e d i n d i c a t i n g t h a t the m o b i l i t y of the a t o m s during d e p o s i t i o n was l a r g e enough f o r a d e c o m p o sition into t w o phases. H o w e v e r , even a s u b s t r a t e
38.5
t e m p e r a t u r e of 300 °C is not high enough to a t t a i n the m e t a s t a b l e e q u i l i b r i u m s t a t e . In a d d i t i o n , we p e r f o r m e d s e r i e s of i n - s i t u X - r a y
3BC
e x p e r i m e n t s with a heating r a t e of 1.5 K / m i n
on
s a m p l e s which e x h i b i t an e x t e n d e d t e r m i n a l solution. I
I
200
i
i
400
i
/
i
5(30
I
From
800
T (°C)
the
expects
free the
energy
formation
curves
(see
of
amorphous
an
Fig.
during h e a t i n g , as long as the f o r m a t i o n FIGURE 3 Change of the (110) peak p o s i t i o n with t e m p e r a t u re during annealing of NbFe films f o r d i f f e r e n t c o m p o s i t i o n s at a heating r a t e of 1.5 ° C / r a i n
2)
one
phase of the
c r y s t a l l i n e phases a r e k i n e t i c a l l y s u p p r e s s e d . The actual a v e r a g e c o n c e n t r a t i o n of the bcc NbFe or F eNb phase can be d e t e r m i n e d by the c o n c e n t r a t i o n d e p e n d e n c e of the (110) d i f f r a c t i o n peak ( c o r r e c t e d
i n v e s t i g a t i o n s . They d e m o n s t r a t e t h a t a film of 22
by the t h e r m a l e x p a n s i o n of the l a t t i c e ) . As shown
at.~ Co e x h i b i t s long m i c r o c r y s t a l l i n e NbCo g r a i n s
in Fig. 3 the F e - c o n t e n t in the bcc N bFe d e c r e a s e s
in an a m o r p h o u s m a t r i x and, t h e r e f o r e ,
p r o o v e the
above 5 0 0 °C and r e a c h e s the same value at about
e x i s t a n c e of the t w o - p h a s e r e g i o n on the N b - r i c h
700 °C f o r all N b - r i c h samples. At this t e m p e r a t u r e
side. C o n t r a r y to t h i s , a film with 35 and 50 at.~
the samples a r e in t h e i r m e t a s t a b l e e q u i l i b r i u m . At
Co, r e s p e c t i v e l y ,
low-contrast
higher t e m p e r a t u r e s the a m o r p h o u s phase c r y s t a l -
p i c t u r e and a b r o a d ring in the d i f f r a c t i o n p a t t e r n ,
lizes into the NbFe i n t e r m e t a l l i c compound and the
both t y p i c a l f o r an a m o r p h o u s s t r u c t u r e .
t e r m i n a l s o l u t i o n . Also f o r the F e - r i c h s a m p l e s the
only
showed
the
These r e s u l t s can be c o m p a r e d with f r e e e n e r -
formation
of the a m o r p h o u s
phase is c o n n e c t e d
gy c u r v e s of the m e t a s t a b l e and s t a b l e phases in
with a c o n t i n u o u s r e d u c t i o n of the Nb c o n t e n t
the N b - C o s y s t e m , which w e r e c a l c u l a t e d by the
the FeNb phase i n d i c a t e d by an i n c r e a s e
calphad m e t h o d (Fig. 2) 3 . Due to the s i m i l a r i t y of
peak p o s i t i o n (see Fig. 3).
the phase d i a g r a m s the c a l c u l a t i o n s f o r the N b - F e
In o r d e r to study the t r a n s f o r m a t i o n
in
of the
k i n e t i c s into
phases should be c o m p a r a b l e to the N b - C o s y s t e m .
the a m o r p h o u s phase and the c r y s t a l l i z a t i o n p r o -
The limits of the s i n g l e - and t w o - p h a s e r e g i o n s a r e
cess, isothermalin-situ
given by the common t a n g e n t s applied to the f r e e
performed
e n e r g y c u r v e s of the c o r r e s p o n d i n g
r e s u l t s show that the peak p o s i t i o n as well as the
phases.
For
at
X-ray measurements were
6 5 0 °C on a N b s o F e 2 o
film.
The
i n s t a n c e , in the f i g u r e the t a n g e n t f o r the m e t a -
peak i n t e n s i t y of the (110) r e f l e x f o r the bcc N__bbFe
s t a b l e e q u i l i b r i u m b e t w e e n the b c c - N b C o ( w i t h
phase d e c r e a s e s with time. T h e r e f o r e , both the Fe
3
H.-U. Krebs et al./Sputtered Nb-Fe and Nb-Co films
202
avoid the f o r m a t i o n of i n t e r m e t a l l i c
39.0" ~ F
compounds.
H o w e v e r , s u r f a c e diffusion allows a chemical and
-~3B= .
structural
650°C
decomposition
film
deposition
leading to the f o r m a t i o n of t w o - p h a s e regions for c e r t a i n c o m p o s i t i o n s . With
3BO ~ . . . .
during
-,.
i
decreasing s u b s t r a t e
t e m p e r a t u r e the e x t e n t i o n of the solid solution of the N bFe phase is enhanced. T h e r e f o r e , some of the samples s t a r t in a state, which is e n e r g e t i c a l l y
3?5
above that of the m e t a s t a b l e equilibrium.
During
annealing they can l o w e r the f r e e energy t o w a r d s
i
i
the m e t a s t a b l e equilibrium: The t r a n s f o r m a t i o n of
i
supersaturated
~r (~1
N__bbFe is f i r s t
connected
with
a
continuous r e d u c t i o n of the Fe c o n t e n t in the N__bbFe grains and the f o r m a t i o n of an a m o r p h o u s phase,
FIGURE 4 Plot of the change in the (110) peak position and its i n t e n s i t y f o r the NIoFe solid solution with V~ during i s o t h e r m a l annealing at 6 5 0 °C
l a t e r with the c r y s t a l l i z a t i o n of this phase into the stable t h e r m o d y n a m i c equilibrium s t a t e . In i s o t h e r mal heat t r e a t m e n t s we observed that during this
c o n c e n t r a t i o n in the N bFe phase and its volume
t r a n s f o r m a t i o n the d e c r e a s e of the c o n c e n t r a t i o n
f r a c t i o n a r e reduced due to the f o r m a t i o n of the
as well as the volume f r a c t i o n of the N bFe grains
a m o r p h o u s phase. In Fig. 4 the data a r e p l o t t e d vs.
due to the f o r m a t i o n of the a m o r p h o u s phase obey
square r o o t of time t. Obviously, over a t i m e scale
a ~ - law.
of about 40 hours the peak position obeys a ~ - law, indicating t h a t during the a m o r p h i z a t i o n and
REFERENCES
c r y s t a l l i z a t i o n p r o c e s s e s the c o n c e n t r a t i o n within
1. R. B. S c h w a r z and W. L. Johnson, Phys. Rev. L e t t . 51 (1983) 415.
the N.__bbFegrains linearly d e c r e a s e s with V't. For s h o r t times also the i n t e n s i t y of the (110) r e f l e x and, t h e r e f o r e , the volume f r a c t i o n of the N bFe phase d e c r e a s e s linearly with VT. The amount of the a m o r p h o u s phase f o r m e d is p r o p o r t i o n a l to the diminishing of the N.__bbFe phase. A f t e r
about
27
hours a change of the slope is visible in Fig. 4 originating
from
Fe-poor
N__bbFe f o r m e d
during
c r y s t a l l i z a t i o n of the a m o r p h o u s phase.
4. CONCLUSIONS The r e s u l t s transformations
of the s p u t t e r e d during
an
films
and t h e i r
annealing
treatment
can be explained by the f r e e energy curves d e t e r mined
by
the
calphad
method.
Obviously,
the
quenching r a t e of the s p u t t e r i n g process at subs t r a t e t e m p e r a t u r e s up to 300 °C is high enough to
2. R. Bormann, F. G ~ r t n e r and K. Z ~ l t z e r , J. L e s s Common Met. 145 (1988) 19. 3. R. Bormann and R. Busch, this c o n f e r e n c e . 4. H. S c h l l l t e r , H. C. F r e y h a r d t , H. U. Krebs, and R. Bormann, Zt. Phys. Chem. 157 (1987) 4.07.