Super-Yangian double and its central extension

Super-Yangian double and its central extension

8 September 1997 PHYSICS Physics Letters A 234 (1997) ELSEVIER LETTERS A 20-26 Super-Yangian double and its central extension Yao-Zhong Zhang ’ ...

390KB Sizes 1 Downloads 41 Views

8 September 1997 PHYSICS

Physics Letters A 234 (1997)

ELSEVIER

LETTERS

A

20-26

Super-Yangian double and its central extension Yao-Zhong Zhang ’ Department of Mathematics,

University of Queensland, Brisbane, Queensland 4072, Australia

Received 22 March 1997; accepted for publication Communicated by A.P. Fordy

2 July 1997

Abstract

1. We give their defining We introduce the super-Yangian double DYr,[gl(mln)] and its central extension DY&mln) relations in terms of current generators and obtain Drinfeld co-multiplication. @ 1997 Elsevier Science B.V.

This paper is concerned

with the Drinfeld current realization

[ 1] of the super-Yangian

double DYh[ gI( mln) ]

and its central extension DYh&$%in)]. The Yangian double [2] DYh(p) of a simple bosonic Lie algebra 6 is a quantum double of the Yangian Yh(G) [ 11. It is a deformation of the entire loop algebra and has important applications in massive integrable models [ 3,4]. The Yangian double with center (or central extension of the Yangian double) D=) for G = gZ( n) , sl( n) were introduced in Refs. [5,6] in terms of Drinfeld current generators. The aim of this paper is to introduce the super-Yangian double DYh[gl( m/n) ] and its central extension DYhG[n) 1. This is achieved by generalizing the Reshetikhin and Semenov-Tian-Shansky (RS) construction [7] to the supersymmetric case. Using this super-RS construction and Gauss decomposition [8], we obtain in terms of super current generators. The computation in this paper the defining relations for DYkG\n)] is parallel to our recent work [9] on the Drinfeld current realization of the quantum affine superalgebra uJ&Tb+v’)l ( see also Ref. [ lo] for the special case of m = n = l), which in some sense is a superization of Ref. [Ill. The graded Yang-Baxter equation (YBE) with spectral-parameter dependence has the form R12(U

where R(u)

-

U)R13(U)R23(U)

= R23(U)R13(U)R12(U

-

0)~

(1)

E End( V @$V) with V being a graded vector space and obeys the weight conservation

# 0 only when [(u’] + [p’] + [a] + [p] = Omod2. The multiplication R(u)$’ is defined for homogeneous elements a, b, c, d of a quantum superalgebra by (a@b)(c@d) ’ Queen Elizabeth 03759601/97/$17.00

= (-l)‘b’[C1(.c@bd), II Fellow. E-mail: [email protected]. @ 1997 Elsevier

PII SO375-9601(97)00560-4

Science B.V. All rights reserved

condition

rule for the tensor product

(2)

Z-Z Zhung/Physics Letters A 234 (1997) 20-26

21

where [a] E Zz denotes the grading of the element a. We introduce the graded permutation operator P on the tensor product module V @IV such that P ( ua 18 up) = ( - 1) la1 lP1 (up @Iun) , Vu,, up E V. In most cases the R-matrix enjoys, among others, the following properties, P12R12(~)P12

(3)

= R21(u),

RI~(u)R~I(-u)

= 1.

(4)

The graded YBE, when written in matrix form, carries extra signs [ 13,121,

In Ref. [9] we generalized the RS construction [7] to supersymmetric cases and obtained the Drinfeld realization of the quantum affine superalgebra Us[gl(m]n)“)]. Here we consider the rational solution R(u) to the graded YBE and give a “rational” super-RS algebra: 1. The rational super-RS

Definition

R(u - u)LF(u)L;(u)

algebra is generated by invertible

= L;(u)Lf(u)R(u

R(u+ - u_)L;(u)L;(u)

L*(U) , satisfying

-u).

=L,(u)L~(u)R(u-

-u+),

(6)

where L?(u) = L*(U) @ 1, L:(U) = 1 @L*(U) and u* = uf ;Fic. For the first formula of (6), the expansion direction of R(u - u) can be chosen in u/u or u/u, but for the second formula, the expansion direction must only be in u/u. In matrix form, (6) carries extra signs due to the graded multiplication R( u - u);;~ p(u)$p(u)$ = L*(u)~L*(#&J P

R(u+ - u_)$~

(1

0 $’

(_~)L~‘lw’1+wl) - ufPa”P” ( - 1) [al([Bl+w7)

~+(u)~~,~-(u)~:(_l)[~‘l’la’l+~~l’

= L-(u);L+(u)$‘R(u_

We introduce

rule of tensor products,

- u+)$;:,

(-l)‘a’(‘f11+‘8’1),

(7)

the matrix 8,

= ( -1)‘““%,,,6ppL

(8)

With the help of this matrix 8, one can cast (7) into the usual matrix equation, R(u - u)Lf(u)eL;(u)e

= eL;(u)eLf(u)R(u

R(~+ - u_)L;(u)eq(u)e

= eL;(u)eL;(u)R(u_

- u), - v+).

Now the multiplications in (9) are simply the usual matrix multiplications. We will take R(u) E End( V 8 V) to be Yang’s rational R-matrix associated R(u)

= --&p

+2fiP),

(9)

with superalgebra

gZ(m]n),

( 10)

22

Y-Z Zhang/Physics

where

Letters A 234 (1997) 20-26

V is a (m + n)-dimensional graded vector space. Let basis vectors {ur, ~2, . . . , u,} . .? urn+,} be odd. Then the R-matrix has the following matrix elements,

be even and

{&fl+1, %l+2,.

= (-pq(u)$‘,

R(u)$’

(11) It is easy to check that the R-matrix super-Yangian

L*(u)

has the following

(3)

and (4).

We will construct

the central

extended

Gauss decomposition,

=

e;+,:,(u)

1 f&(u)

x

satisfies

1.

double DY, E/n)

Theorem 1. L*(u)

R(u)

(. ..

:

.

. . . eZt;n,mtn_l (u)

ffyu) .-. .

.

flf,+,W !) ’ fi+n-l‘m+n(u i i

f,$( u) and k’(u)

(i > j)

xl:(u) = f;+Ju+> - &(u-L whereu+=ufiTic,thenc,

are elements

X,‘(u),

decomposition

in the rational

k:(u),

implies

i=1,2

,...,

m+n-1,

double DYhmln)]

that the elements

eifj( u),

determined by L*(u). In the following, we will denote f;+t The following matrix equations can be deduced from (9), R2,(u - v)8L~(u)~L~(u) R21(u_ - v+>BL;(u)t9L~(v)

super-RS

algebra

and kif (u)

XT(u) = ei+,*,i(u-)- ei,l,i(ut>,

relations of the central extended super-Yangian the super-Yangian double DYh [g1( mln) 1. The Gauss

(12)

.

0

where eifi( u), invertible. Let

1

= r;f=(~)OL;(u)t?R~~(u = L;(u)fIL;(u)6’R21(u+

are

(13)

j=1,2

,...,

m+ngivethedefining

which, when c = 0, reduce to those of

f$( u) (i

>

j)

and k’(u)

are uniquely

(u) , eif+,,i( u) as fif (u) , etf( u), respectively.

- v), - v_),

(14) (15)

eL~(U)-1eL~(v)-1R2,(U -u) =R21(~-v)L~(v)-*eL2f(~)-1e,

(16)

eL,f(U)-1eL,(v)-1R2,(U+ -v_) =Rzl(u_ -v+)~,(v)-~e~zf(~)-~e,

(17)

v)eL2f(U)e=eL2f(U)eR2,(UU)~f(U)-l,

(18)

L;(~)-~R~,(u-

E-Z

Zhang/ Physics Letters A 234 (1997)

20-26

23

qtw’R21(*+ - v_)eL,+(u)e = eL;(U)eR*,(U_ - u+)L,(u)-‘,

(19)

- ~+)e~,(u)e=e~z(u)e~~~(~+-v_)~~(~)-~,

L;(“)-~R~,(L

(20)

where R2’ (u - u) = R( v - u)-‘. As in (9), the multiplications in ( 14)-(20) are usual matrix multiplications. Using (8)) ( II), (9), ( 14)-( 20) and Theorem 1, and by calculations parallel to Ref. [ 91, we obtain Dejinition 2. DYhaln)] is an associative algebra over the ring of formal power series in the variable and withDrinfeldcurrentgenerators: Xi’(u), k:(u), i=1,2,...,m+n-1, j= 1,2,...,m+nandacentral element

c. fi)

are invertible.

The grading

of the generators

is: [X;(u)]

c = 0, DYh [ gl( mln) ] reduces to DYh[ g1( mln) 1. The defining relations

are given by

k’(U)kjf(“)

= k;(“)ki(u),

i # j,

k’(u)k,(o)

= k;(u)k;(u),

i < m,

u+ - v- - 2n u +-vu-

+2n

kif(U)ki(“)

‘* - “’ u*-u,+2fi

u_ - v+ - 2n

=

u_-u++2n

k’(“)-‘kF(u)

=

_ ki (v)k+(u),

” - “* uF-u&+2ri

&(u)kT(“)-‘, J

m j,

k;(u)-‘x;(“)k~(Il)

=xZ:(v),

j-i<

k:(u)-‘x;(“)k;(u)

=x+(u),

j-i<-1,

kf(u)-‘X,-(“)k+)

= xl:(v),

j-i>2,

kf(u)-‘x;(u)k;(u)

= Xi+(u),

j-iZ2,

kf(u)-‘X[:(u)k~(u) = kf(u)-‘Xl:(“)kf(u)

uF-“+2fi UT - v

= “‘,

k;‘(u)-‘X*Wkif,(u)

_ xi (“)7

“r--o

2fixI:(“),

= uF-v-2nx;(“), u 7-u UT-u+2Fi _ = xi (“)V

k~‘(U)-‘X~Wk~,(U)

= 1 and zero otherwise.

-1, or

i < m. m
U r---u

U& k'(u)X;(u)k'(u)-'=

k’(u)Xi+(v)k’W’

-u+2fi ** _u

=

u* -u-2zi u* - u

k~,(U)Xif(“)k;‘(U)-’

=

k~,(U)Xif(U)k;,(U>-’

=

k’(u)-lx,-(u)k’(u)

=

k’(u)X;(u)k’(u)-’

=

Xi+(u),

i < m,

Xi’(“),

m
u*-v-22ri u* -u u* -u+2n U& - v

UT - u+2n UT - v

Xi+(“),

i < m,

X,‘(u),

m
_ X, (“),

i=m,

m+l,

X,+(u),

i=m,

m+l,

u* - u + 2h Uf - v

6

When

r-2 Bang/Physics

24

(u -

u ww’(u)x~(u)

= (u -

(u - u * 2@X,‘(c4)X,r(u)

u

Letters

A 234 (1997) 20-26

i < m,

*22n)x3u)x3u),

m
= (u - u r2h)X3u)XF(u),

{x;(~>,x~(u)}=o, (u - u)Xif(u)X,+,,(u)

= (u - u + 2n)Xi+,,(u)Xif(u),

i < m,

(u - u)Xi+(u)X,‘,,(u,

= (u - u - 2fi)X:,,

m
(u)Xi+(u),

(U-u+22li)X~~(u)X~S,(u)

=(u-u)x~;,(u)x~~(u),

i < m,

(u - u - 2fi)xL~(u)x*<,(u)

= (u - u)xi-,I(u)x;(u),

m
[x’(u),X,‘(U)l

i,j

=-2@ij

(fi(U-

-U+)k,+,l(U+)k+(U+)-’

-6(U+

-U_)k,,(u+)k,(u+)-‘),

# m,

vm+(~)xxu))

=2fq@-

- u+)k;+,(u+)k;(u+)-’

where [X, Y] E XY - YX stands for a commutator S(u - u) = c

-6(u+

(21)

- u_>k,+,(u+)k,(u+)-1))

and {X, Y} E XY + Ix for an anti-commutator

l&l-k-’

and (22)

kc2

Serre and extra Serge [ 14,151 relations,

is a formal series, together with the following WWX~h)Xif+,W + {Ul H

u2)

- 2x,f(w)x~,(u)x~(u*) = 0,

i # 171,

= 0,

i#m-1,

v.$(w;,(~*)x~(u) +

{(w

{lq

*

u2)

((4

-u1

+ {u, {(w

(23)

-2x,=~(~,)xif(u)x~,(u,>

-u2

+x~(u)X~*(u,)X~l(U*)}

(24)

- u2 T 2hi) K3~,)x;(~z)x~_,(u) + {Ul +-+ u2)

+x~,(u)x~(u,)x~(u2)}

- 2x~(u,)x~_,(u)x,f(u*)

(25)

+2~)[x~(~l)x,f(~*)x~+,(u)

-~~~(u,)xmf+,(u)x,f(u;!)

+x~+,(u>x~(u,)x,f(u*)]}

c-) 112) = 0,

(26)

-2X;(u,)X;_,(u,)X;(u;!)X~+,(ua)]

r2~)[X~(u,)X~(u2)X~_,(u,)X~+,(u2)

~f~~~-1(~1~~~(~1~~~(~2)~~+1(~2~

+ (u2 -u1

+ x:-1

+ {Ul *

(Ul w;+,

(~2)X,f(~l)X~(~2)1}

k’(u)kjf(u)

= kif(u)k’(u),

k;(u)k;(u)

= k,(u)k:(uL

u

(u)x;(u,)x~(u2)]}

= 0,

r2fN-2X~_,(u,)X~(u,)X~+,(u2)X~(u2) u2)

Remark. For the special case of m = n = 1, we have

z4

+ x2_,

+ - u_ - 2h + _ u_ + 2fik;(u)k,(u)

‘* -” k;(u)-‘k:(u) u* - UT + 2h

i, j=

1,2,

= ‘- 2’ u_ -_ “+ u+ + 2fik;(u)k:(u)v =

” - ‘* uF-u*+frF

k;(u)k;(u)-‘,

= 0.

(27)

E-Z Zhang/Physics Letters A 234 (1997) 20-26

k?(u)-‘X&l)k~(u) = UTUT

k~(u)X;(u)k;(u)-’

{X~(u>,X,(u)}

=

u+2RX;(,), u -

U& -u+2fi U& - u

=2fi(S(u_

Xj%&

- u+)k:(u+)k~(o+)-’

These are the defining relations of DYbz] super-Yangian double DYh[ gE( 111) ] obtained Theorem 2. The algebra by the following formulae. Coproduct h:

25

DYhE]n)]

- qu,

1) 1, which, in Ref. [ 161.

- u-)k,b+)k,(u+)-l).

when c = 0, reduce

given by Definition

(28)

to those of the centerless

2 has a Hopf algebra structure,

which is given

A(c)=c@l+l@c, A@(u))

= kj’(u zt ;ricz) @ ki’(u F $7q),

A(X;(u))

= Xi+(u) @ 1 + @i(u + $1)

j=

1,2 ,...,

@ X”(u + Tic,), i= 1,2,. ..,m+n-

A(X~(U))=~~X~~(U)+X~~(U+~~C~)~~~(U+~~~C~), where CI = c@ 1, c2 = 1 BC, &(u) Counit l :

E(kf(U)) = 1,

E(C) = 0, Antipode

= k,,(u)k,(u)-’

l(Xif(u>)

1,

(29)

and q&(u) = kL,(u)kt(u)-‘.

= 0.

(30)

S:

S(c) = -c, s(x+(u))

mfn,

S(k;(u)) = -&(u

= k;(u)-‘,

- $c)-‘x;(u

- hc),

S(X*‘(U))

=-X~‘(U-ti)$i(U-

ih)-‘.

(31)

Acknowledgement This work is supported by the Australian Research Council, Staff Research Grant and External Support Enabling Grant.

and in part by a University

of Queensland

New

References ]I] [2] [3] [ 41 [5] [6] (71

V.G. Drinfeld, Sov. Math. Dokl. 36 (1988) 212. S. Khoroshkin and V. Tolstoy, Lett. Math. Phys. 36 (1996) 319. D. Bernard and A. L&lair, Nucl. Phys. B 399 (1993) 709. EA. Smimov, hit. J. Mod. Phys. A 7 suppl. 1B ( 1992) 813. S. Khoroshkin, Central extension of the Yangian double, preprint q-alg/960203 1. K. Iohara and M. Kohno, Lett. Math. Phys. 37 (1996) 319. N.Yu. Reshetikhin and M.A. Semenov-Tian-Shansky, Lett. Math. Phys. 19 (1990) 133. [S] J. Ding and I.B. Frenkel, Commun. Math. Phys. 155 (1993) 277. [9] Y.-Z. Zhang, Comments on Drinfeld realization of quantum affine superalgebra Us[gl(mjn)tt)] preprint q-alg/9703020.

and its Hopf algebra

structure,

26

E-Z Zhang/Physics titters A 234 (1997) 20-26

[ IO] J.-E Cai, SK. Wang, K. Wu and W.-Z. Zhao, Drinfeld realization of quantum affine superalgebra

Uq [ex)],

preprint q-aIg/9703022

[ 111H. Fan. E.-Y. Hou and K.-J. Shi, J. Math. Phys. 38 (1997) 41 I. [ 121 Y.-Z. Zhang, On the graded Yang-Baxter and reflection equations, Commun. Theor. Phys. ( 1996). [ 131 A.J. Bracken, G.W. Delius. M.D. Gould and Y.-Z. Zhang, J. Phys. A 27 (1994) 6551. [ 141 M. Scheunert, Lett. Math. Phys. 24 (1992) 173. [ 151H. Yamane, On defining relations of affine Lie superalgebras and their quantized universal enveloping superalgebras, preprint qalg/9603015. [ 161 J.-E Cai, G.-X. Ju, K. Wu and S.-K. Wang, Super Yangian double DY(gl( 111))and its Gauss decomposition, preprint q-alg/9701011,