433
SYNOPTIC SCALE VARIABILITY OF HYDROPHYSICAL
FIELDS I N THE BALTIC PROPER ON THE B A S I S OF CTD MEASUREMENTS A. Aitsam, J. Elken I n s t i t u t e o f Thermophysics and Electrophysics Academy o f Sciences o f t h e Estonian S.S.R. ABSTRACT The r e s u l t s o f CTD surveys i n t h e ' B a l t i c Proper on r e c t a n g u l a r g r i d s w i t h spacing o f 5 n a u t i c a l m i l e s a r e analyzed.
Eddylike p e r t u r b a t i o n s o f
t h e r e l a t i v e dynamic topography (ROT), w i t h diameters equal t o 2 t o 5 t i m e s t h e i n t e r n a l Rossby r a d i u s o f deformation Rd (E 10 km), are described.
The
t y p i c a l m i g r a t i o n speed o f these p e r t u r b a t i o n s i s a few cm/sec and i t 5 s d i r e c t e d along t h e averaged isobaths w i t h shallower water on t h e r i g h t .
It
i s shown t h a t t h e speed and d i r e c t i o n of m i g r a t i o n o f t h e eddies can be e x p l a i n e d i n terms of topographic waves.
The hypothesis t h a t some o f t h e
observed eddies might be generated by b a r o c l i n i c i n s t a b i l i t y o f sheared mean f l o w s i s discussed on t h e b a s i s o f a simple model. estimate absolute v e l o c i t i e s method.
An attempt i s made t o
using a generalization o f the beta-spiral
Synoptic s c a l e processes i n t h e B a l t i c a r e compared t o t h e i r ocea-
n i c counterparts.
INTRODUCTION Synoptic eddies (Koshlyakov and Monin, 1978; Woods and Minnett, 1979) o r "mesoscale" eddies ( t h e l a t t e r term i s w i d e l y used by t h e MODE Group, 1978) a r e a common phenomenon i n t h e open ocean as w e l l as near f r o n t a l currents.
The B a l t i c Sea i s one o f t h e most thoroughly i n v e s t i g a t e d semi-
enclosed seas (Jansson, 1978); y e t , s y n o p t i c scale v a r i a b i l i t y has n o t been s t u d i e d here as much as i n t h e ocean.
Previous observations worth mention-
i n g i n c l u d e t h e s e c t i o n o f thermocline anomaly observed by Keunecke and Magaard (1974)
u s i n g a towed t h e r m i s t o r s t r i n g ; i n t e r e s t i n g data from the
s i x t i e s i n t h e Arcona Basin (Kielmann e t a l . , (Sustavov
e t al.,
1978);
1973) and i n t h e Gotland Basin
and r e s u l t s o f t h e B a l t i c - 7 5 experiment i n t h e
Bornholm Basin (Kielmann e t a l . ,
1976).
As f o r numerical model s t u d i e s ,
e d d y l i k e motions can be s i m u l a t e d i f t h e r e s o l u t i o n o f t h e model i s s u f f i c i e n t (Simons, 1978; Kielmann, 1978). The aim o f our s t u d i e s i s t o broaden our knowledge o f t h e three-dimens i o n a l s t r u c t u r e o f s y n o p t i c s c a l e p e r t u r b a t i o n s and o f t h e i r e v o l u t i o n . The f i e l d experiments described i n t h e n e x t s e c t i o n t o o k p l a c e mainly i n t h e
BOSEX area.
434
I n t h i s paper, we consider t h e r e s u l t s o f v e r t i c a l CTD c a s t s obtained d u r i n g several surveys.
A t t h e present time, t h i s i s t h e o n l y p o s s i b l e way
t o achieve s u f f i c i e n t s p a t i a l coverage and r e s o l u t i o n t o document l o w f r e quency motions f r o m t h e surface down t o t h e bottom l a y e r s .
The complete
l i s t o f measurements a l s o i n c l u d e s d i r e c t c u r r e n t measurements a t various mooring s t a t i o n s ,
and CTO p r o f i l e s obtained w i t h an u n d u l a t i n g underwater
u n i t towed i n t h e upper l a y e r .
U n f o r t u n a t e l y , t h e most i n t e n s i v e d e n s i t y
anomalies were n o t covered by d i r e c t c u r r e n t measurements.
Some o f t h e
r e s u l t s o f t h i s complex p r o j e c t a r e described i n another paper
earlier
(Aitsam e t a l . , 1981). METHODS
A l a r g e number o f hydrographic measurements has been made i n t h e ocean as w e l l as i n t h e B a l t i c Sea d u r i n g t h e l a s t century.
However, h i s t o r i c a l
data are t o o sparse i n space and t i m e t o r e s o l v e t h e s y n o p t i c s c a l e motions.
A q u a l i t a t i v e l y new approach was implemented i n t h e course o f s p e c i a l l y designed p r o j e c t s , such as POLYGON-67 (Koshlyakov e t a l . , (Koshlyakov
and Grachev,
1973),
MODE (McWilliams,
1970), POLYGON-70
1976) and POLYMODE; i n
these experiments, hydrographic casts were o b t a i n e d a t s t a t i o n s c o v e r i n g a r e g u l a r g r i d w i t h proper g r i d spacing.
We have no i n f o r m a t i o n about s i m i l a r
measurements i n t h e B a l t i c Sea and our t a s k was t o apply "oceanic" methods and h i s t o r i c a l experiences t o t h e B a l t i c . simply a reduced model o f t h e ocean,
However, t h e B a l t i c Sea i s n o t
so t h a t t h e a p p l i c a t i o n o f oceanic
r e s u l t s t o t h e B a l t i c case r e q u i r e s caution. For t h e design o f an oceanographic experiment, t h e optimal sampling r a t e and t h e optimal c o n f i g u r a t i o n and spacing o f s t a t i o n s can be found i f t h e c o r r e l a t i o n and s p e c t r a l c h a r a c t e r i s t i c s are known ( B r e t h e r t o n e t a l . , 1976).
The s p a t i a l c o r r e l a t i o n f u n c t i o n s were n o t known a t t h e s t a r t o f our
i n v e s t i g a t i o n s , so we e l e c t e d t o make measurements on a r e c t a n g u l a r g r i d w i t h a spacing o f 5 n a u t i c a l m i l e s between g r i d p o i n t s .
The l a t t e r choice
was based on t h e hypothesis t h a t the scales o f t h e eddies and o f t h e i n t e r n a l Rossby r a d i u s o f deformation, Rd,
a r e s i m i l a r i n t h e ocean and i n t h e
I n t h e B a l t i c , Rd i s about 10 km.
Baltic.
We s e l e c t e d experimental areas
w i t h r e l a t i v e l y smooth bottom slopes, and w i t h depths g r e a t e r than 80 m i n order
to
include the halocline.
The o r i e n t a t i o n o f t h e g r i d was chosen
according t o t h e p e c u l a r i t i e s o f t h e bottom topography.
The number o f
s t a t i o n s was l i m i t e d t o ensure t h a t surveys c o u l d be completed i n two days o r less. The v a r i o u s surveys w e r e performed d u r i n g c r u i s e s o f t h e R/V "Ayu-Dag". Most surveys were conducted i n t h e BOSEX area (Aitsam and Elken, 1980), and some t o o k p l a c e i n t h e Bornholm Basin and i n t h e Gotland Basin t o t h e n o r t h
435 1).
o f t h e BOSEX a r e ( F i g .
The surveys are l i s t e d i n Table 1.
I n this
t a b l e , t h e f i r s t i t e m o f t h e survey number denotes t h e c r u i s e number o f t h e
R/V "Ayu-Dag".
The l e n g t h s ( i n n a u t i c a l m i l e s ) o f t h e sides o f t h e g r i d s i n
t h e x- and y - d i r e c t i o n s are t a b u l a t e d under t h e heading "Survey area". x-
and y-axes
a r e d i r e c t e d eastward and northward:
1981 surveys; t h e axes a r e r o t a t e d 30' 1980.
respectively,
The
f o r the
clockwise f o r t h e surveys o f 1979 and
The lower l e f t and upper r i g h t coordinates d e f i n e the geographical
coordinates
o f t h e working area;
they correspond t o t h e corners o f t h e
"boxes" shown i n F i g u r e 1. I n t h e BOSEX area t h e bottom topography i s s l o p i n g mainly i n t h e x - d i r e c t i o n (see t h e maps i n Aitsam e t a l . ,.,' 1981, and i n Aitsam and Talpsepp. On t h e l e f t s i d e o f t h e area t h e slope exceeds 5-10-3, i n t h e cen-
1980).
t r a l p a r t t h e slope i s more moderate, r a n g i n g from 5-10-4 t o t h e r i g h t s i d e t h e depth decreases.
and on
A t y p i c a l depth i s 100 m.
The i n s t r u m e n t used i s t h e N e i l Brown Mark I11 CTD-profiler, c h a r a c t e r i s t i c s a r e described elsewhere (Laanemets and L i l o v e r , 1981).
whose The
d a t a were c o l l e c t e d on a REVOX audio tape recorder, and subsequently t r a n s f e r r e d t o a HP-9825A microcomputer f o r p r e l i m i n a r y data processing and s t o r age on HP-9885 f l e x i b l e d i s k s . I n t h e p r e l i m i n a r y data processing phase, temperature and c o n d u c t i v i t y data a r e i n t e r p o l a t e d a t pressure i n t e r v a l s o f 0.1 dbar; s a l i n i t y and density
values
(1981).
are
then
c a l c u l a t e d as described i n Laanemets and L i l o v e r
To f a c i l i t a t e f u r t h e r analyses, temperature,
s a l i n i t y and d e n s i t y
values a t s e l e c t e d pressure l e v e l s as w e l l as temperature,
s a l i n i t y and
pressure values a t s e l e c t e d d e n s i t y l e v e l s are compiled i n e a s i l y r e t r i e v a b l e format.
Also some i n t e g r a t e d p r o p e r t i e s , such as t h e r e l a t i v e dynamic
e. t h e d i f f e r e n c e o f dynamic h e i g h t s ) , henceforth denoted RTD, topography (i. a r e c a l c u l a t e d between s e l e c t e d pressure l e v e l s .
The RDT i s c a l c u l a t e d
according t o t h e formula:
where p1 and p2 denote pressure values ( i n dbars i n t h e argument o f RDT, w i t h p1 < p2); g, water;
and D(p2,
t h e a c c e l e r a t i o n due t o g r a v i t y ; p , t h e d e n s i t y o f t h e
p,),
t h e RDT i n cm, o r w i t h t h e accuracy o f
g in
dynamic cm. The d a t a i n pressure coordinates and t h e RDT have minor instrumental e r r o r s f o r s y n o p t i c scale s t u d i e s , except f o r t h e s a l i n i t y i n t h e thermoc l i n e l a y e r where n e g a t i v e spikes can occur. v e r t i c a l coordinate,
When d e n s i t y i s used as t h e
s p e c i a l care must be taken.
For long-term processes
436
I
Figure 1.
i
Basic areas f o r CTD surveys i n 1979, 1980 and 1981 (boxes), w i t h
depth contours (dashed l i n e s ) labeled i n meters. t h e water ii assumed t o be s t a b l y s t r a t i f i e d .
However, d e n s i t y inversions
are present i n some o f the observed p r o f i l e s .
These i n v e r s i o n s are removed
t o guarantee one-to-one correspondence o f pressure and density.
The e s t i -
TABLE 1.
L i s t o f the CTD surveys
Survey Number
day
Time month year
13/1 13/2 13/3 13/4 13/5 15/1 15/2 16/1 17/1 18/1 18/2 18/3 19/1 20/1 20/2 22/1 22/2 23/1 23/2 23/3 23/4 23/5
27 28 29-30 2-3 10-11 5-6 15-16 25-26 8-9 30-31 8-9 10-11 1-3 10-11 2-3 25-26 29-30 3-5 15-16 21-22 26-27 4-5
05 05 05 06 06 08 08 09 05 05 06 06 07 08 09 04 04 06 06 06 06 07
79 79 79 79 79 79 79 79 80 80 80 80 80 80 80 81 81 81 81 81 81 81
Duration (hrs)
Survey area
Number o f casts
18 21 34 20 20 24 20 23 24 32 33 27 39 37 30 34 32 44 26 26 25 25
20x20 20x20 30x20 20x20 20x20 20x20 20x20 20x20 20x25 20x25 20x25 25x20 20x25 25x25 20x25 25x25 25x25 25x30 20x20 20x20 20x20 20x20
21 21 38 21 21 21 21 21 30 30 30 27 30 36 30 36 36 42 25 25 25 25
Geographical Coordinates Lower l e f t Upper r i g h t Latitude Longitude Latitude Longitude 50'14.5'N 50'14.5'N 50'14.5'N 50'14.5'N 50'14.5'N 50'14.5'N 50'14.5'N 50'14. 5'N 56'03.4' N 56'03.4'N 56'03.4" 56'05.4' N 56'03.4" 56'03.4'N 56'03.4' N 55'00. O ' N 55'00.O'N 56'31.0'N 56'31. O'N 56'31.0'N 56'31.0'N 56'31. O ' N
18'21.3'E 18'21.3' E 18'21.3' E 18'21.3' E 18'21.3' E 18'21.3'E 18'21.3' E 18'21.3' E. 18'18.8'E 18'18.8'E 18'18.8'E 18'31.1' E 18'18.8' E 18'18.8 ' E 18'18.8' E 15'30.O'E 15'30. O ' E 18'55.4 ' E 18'55.4' E 18'55.4' E 18'55.4' E 18'55.4' E
56'21.1'N 56'21.1' N 56'15.7" 56'21.1" 56'21.1'N 56'21.1" 56'21.1'N 56'21.1' N 56'14.8" 56'14.8' N 56'14.8 ' N 56'09.3'N 56'14.8' N 56'12.1" 56'14.8" 55'25. O'N 55'25.0' N 57'01.0 ' N 56'51.0'N 56'51. O ' N 56'51.0' N 56'51. O'N
19'11.1' E 19'11.1'E 19'25.0' E 19'11. 1'E 19'11.1' E 19'11.1' E 19'11.1' E 19'11.1' E 19'12.4' E 19'12.4' E 19'12.4'E 19'27.8'E 19'12.4'E 19'20.1' E 19'12.4' E 16'13.4' E 16'13.4' E 19'40.7 ' E 19'32.1' E 19'32.1' E 19'32.1'E 19'32.1'E
438 mates o f t h e measurement e r r o r based on " t o t a l d i f f e r e n c e " type expressions are n o t good because t h e p r o f i l e s can be t o o jagged w i t h i n t h e d e n s i t y e r r o r intervals.
The e r r o r on t h e q u a n t i t y $ (temperature, s a l i n i t y o r pressure)
a t t h e d e n s i t y value
at
i s determined as f o l l o w s .
i n s t r u m e n t a l e r r o r s on $ and at, and l e t 41(a,) t h e measured p r o f i l e s o f
$(p)
w i t h i n the density i n t e r v a l Then t h e t r u e value o f $ a t
(at
at
at
be t h e
Consider a l l t h e values o f $
and ot(p).
- Aat,
L e t A$ and Aut
be t h e r e l a t i o n obtained from
+ Aut),
and f i n d
i s between t h e l i m i t s
(qmin
-
and. , , ,$
+ A$),
A$,
and i t should be determined i n d i v i d u a l l y every t i m e . The t y p i c a l v e r t i c a l s t r a t i f i c a t i o n o f t h e B a l t i c waters i s w e l l known. The upper boundary o f t h e h a l o c l i n e i s l o c a t e d between 60 and 80 m,.,'and separates t h e upper c o l d / f r e s h
it
waters from t h e l o w e r warm/salty waters.
D u r i n g summer, a very steep thermocline a t a depth o f 1 5 t o 30 m separates t h e warm upper "quasi-homogeneous''
l a y e r and t h e c o l d i n t e r m e d i a t e l a y e r .
When i n t e r p o l a t i n g nonsimultaneous and nonaveraged measurements on a horizontal grid,
i t i s n o t easy t o e x t r a c t t h e synoptic s c a l e component o f
the v a r i a b i l i t y .
Among the several p o s s i b l e i n t e r p o l a t i o n and f i l t r a t i o n
techniques, t h e optimal i n t e r p o l a t i o n (Gandin, "mesoscal e" oceanographers
1965) has t h e f a v o r o f most
(McWi 11iams , 1976).
For s p e c i a l
purposes,
if
s t a t i s t i c s are n o t w e l l known, t h e l e a s t squares polynomial f i t t i n g ( N i k i t i n and Vinogradova, 1980) c o u l d be u s e f u l . Whatever t h e technique,
t h e s i g n a l t o n o i s e r a t i o i s a v e r y important
parameter which i n d i c a t e s how j u s t i f i e d t h e i n t e r p o l a t i o n procedure can be. I n t h e a l g o r i t h m o f optimal i n t e r p o l a t i o n , t h e e r r o r norm ( r a t i o o f t h e d i s p e r s i o n s o f n o i s e and s i g n a l ) i s e x p l i c i t l y c a l c u l a t e d , and i f t h e value o f t h i s norm i s c l o s e t o one, t h e maps c o n s t r u c t e d by t h e i n t e r p o l a t i o n method are o n l y s l i g h t l y i n f l u e n c e d by t h e measurements. I n order t o estimate t h e e r r o r norms, we c o l l e c t e d s e r i e s o f p r o f i l e s a t given stations
i n d i f f e r e n t seasons.
measure t h e e r r o r d i s p e r s i o n s was one day, casts one hour.
The d u r a t i o n o f each s e r i e s t o and t h e t i m e i n t e r v a l between
During h o r i z o n t a l surveys, t h e d u r a t i o n and t h e t i m e i n t e r -
v a l were about t h e same, b u t t h e measurements were made a t d i f f e r e n t s t a tions.
The e r r o r d i s p e r s i o n ,
E',
i n c l u d e s t h e random measurement e r r o r s and
t h e h i g h frequency n o i s e ( i n t e r n a l waves), a l l y .stationary, contamination trends
of
i n the
which can be assumed s t a t i s t i c -
homogeneous and u n c o r r e l a t e d i n space; "instantaneous"
synoptic
it also includes
p a t t e r n s due t o d i u r n a l
scale p e r t u r b a t i o n s .
The
variations
l a t t e r factor
and
imposes
c e r t a i n l i m i t a t i o n s on t h e survey d u r a t i o n and on t h e number o f s t a t i o n s . Our experience i n d i c a t e s t h a t maps obtained from surveys t a k i n g more t h a n two
days
cannot
be considered
instantaneous,
and some dynamical
and/or
439
statistical
The s i g n a l d i s p e r s i o n , u
time c o r r e c t i o n s are required.
determined from t h e d e v i a t i o n s from the mean of
2
,
is
t h e data obtained i n t h e
h o r i z o n t a l surveys; u2 i n c l u d e s b o t h t h e d i s p e r s i o n o f t h e "cooled" synoptic s c a l e p e r t u r b a t i o n s , and i t s t i m e contamination and h i g h frequency noise. 2 2 Some t y p i c a l d i s t r i b u t i o n s o f t h e e r r o r norm3, q = E /u , f o r t h e summer s t r a t i f i c a t i o n
i n t h e BOSEX area are presented i n F i g u r e 2, w i t h
e i t h e r pressure o r d e n s i t y as t h e " v e r t i c a l " coordinate.
Note t h a t q can be
l a r g e r than one due t o s t a t i s t i c a l u n c e r t a i n t i e s and because t h e i m p l i c i t hypothesis o f s t a t i s t i c a l homogeneity and s t a t i o n a r i t y i s n o t always v a l i d . F i g u r e 2 shows t h a t , when t h e pressure i s used as t h e v e r t i c a l c o o r d i nate, t h e d e n s i t y , temperature and s a l i n i s y p r o f i l e s above t h e 70 dbar l e v e l above t h e h a l o c l i n e ) a r e d i s t u r b e d by " e r r o r s " ; hence i t i s n o t poss-
(i.e.
i b l e t o t r y t o "separate"
o r i d e n t i f y "cooled" p a t t e r n s i n such data.
This
c o n c l u s i o n does n o t apply t o t h e s a l i n i t y i n t h e l a y e r above t h e thermoc l ine
which i s n o t d i s t u r b e d by v e r t i c a l displacements o f i n t e r n a l waves
and d u r n a l heat exchange v a r i a t i o n s .
1eve1 a r e 0 . 1 t o 0.2,
T y p i c a l values o f q below t h e 70 dbar
i n d i c a t i n g t h a t h o r i z o n t a l low frequency inhomogene-
i t i e s dominate over s h o r t - t e r m temporal v a r i a t i o n s i n t h e h a l o c l i n e . he e r r o r norms f o r t h e p r o f i l e s o f pressure, temperature and s a l i n i t y as f u n c t i o n s o f d e n s i t y a r e s m a l l e r than those c a l c u l a t e d i n p-coordinate.
F o r t h e pressure, t y p i c a l values o f q are 0.3-0.5 5.5-6.5), layer,
and 0.1-0.2
i n t h e thermocline (ut =
i n t h e h a l o c l i n e (ut = 7.5-8.5).
I n t h e intermediate
t h e h i g h e r v a l u e o f q can be explained by measurement e r r o r s :
v e r t i c a l d e n s i t y g r a d i e n t i s small i n t h a t l a y e r .
the
As t o t h e temperature and
s a l i n i t y p r o f i l e s i n at-coordinate,
they should t h e o r e t i c a l l y be f r e e o f t h e
kinematic e f f e c t o f i n t e r n a l waves.
The r e l a t i v e l y higher values o f q above
t h e ut = 7.5 l e v e l can be e x p l a i n e d by measurement e r r o r s r a t h e r than by p h y s i c a l processes.
I n these l a y e r s the temperature and s a l i n i t y v a r i a t i o n s
(due t o t h e f i n e s t r u c t u r e ) w i t h i n each d e n s i t y e r r o r i n t e r v a l can be compara b l e t o t h e t h e r m o c l i n i c i t y e f f e c t s described by Woods (1979). cline
(below at
= 7.5),
thermoclinicity
I n t h e halo-
c l e a r l y dominates and q i s very
small. The values o f q f o r t h e r e l a t i v e dynamic topography (RDT) sented i n t h e f i g u r e .
are n o t pre-
I f t h e thermocline and/or t h e h a l o c l i n e l i e between
t h e l i m i t s o f i n t e g r a t i o n , t h e RDT anomalies are caused mainly by t h e t o t a l v e r t i c a l displacement o f these t r a n s i t i o n l a y e r s , and t h e m a n i f e s t a t i o n s o f fine-scale/short-term procedure.
phenomena a r e e l i m i n a t e d v i a t h e v e r t i c a l i n t e g r a t i o n
T y p i c a l values o f q a r e 0.2-0.5
than 0 . 1 f o r t h e h a l o c l i n e .
f o r t h e thermocline, and l e s s
Note t h a t f o r t h e MODE r e g i o n t h e e r r o r norms
a r e w i t h i n t h e range o f 0.1-0.3
(McWilliams, 1976).
I
__ .--0-
/
100: dbar
dbar'
"t\
9.0 F i g u r e 2.
"A
9.0
9.0
V e r t i c a l d i s t r i b u t i o n o f t h e e r r o r norms, q =
as function o f pressure (above); (below).
2
......
-z
'2,
E
2/u 2 , o f d e n s i t y (ut), temperature (T) and s a l i n i t y ( S )
e r r o r norms o f pressure ( p ) ,
The s o l i d l i n e s represent d a t a from survey 20/1,
IA
temperature and s a l i n i t y as f u n c t i o n o f d e n s i t y
t h e dashed l i n e s d a t a from survey 20/2.
441 From t h i s study o f t h e e r r o r norms, we conclude t h a t , i n t h e h a l o c l i n e , t h e amp1 i t u d e o f t h e "cooled"
p a t t e r n s o f synoptic scale p e r t u r b a t i o n s i s
l a r g e r t h a n t h a t o f t h e s h o r t - t e r m v a r i a t i o n s ( w i t h p e r i o d s i n f e r i o r t o one day);
i t i s t h e r e f o r e meaningful t o map t h e observed f i e l d s .
A t t h e same
t i m e we doubt t h a t i t would be j u s t i f i e d t o p l o t , h o r i z o n t a l maps ( o r sections)
o f t h e temperature,
s a l i n i t y o r d e n s i t y f i e l d s a t any given depth
(pressure) l e v e l above 70 m (dbar) when more than a f e w hours elapse between neighbor s t a t i o n s . The knowledge o f t h e s p a t i a l c o r r e l a t i o n f u n c t i o n s i s r e q u i r e d t o draw maps u s i n g t h e optimal i n t e r p o l a t i o n techniques (Gandin,
1965).
Unfortun-
a t e l y , no d a t a o t h e r than those c o l l e c t e d d u r i n g t h e v a r i o u s surveys are a v a i l a b l e f o r determining these c o r r e l a t i o n f u n c t i o n s .
When o n l y a f e w data
p o i n t s from one survey a r e used, t h e s t a , t i s t i c a l u n c e r t a i n t i e s a r e l a r g e , b u t v a r i a t i o n s from survey t o survey are g r e a t e r than t h e estimated c o n f i dence i n t e r v a l . F i g u r e 3 shows an example o f t h e c o r r e l a t i o n f u n c t i o n of D (70,30),the RDT between 30 and 70 db ( i . e . t h e h a l o c l i n e anomalies), s i n g l e survey
(lower
I n t h e a n a l y t i c a l f i t t i n g t h e a n i s o t r o p y was taken i n t o account
by t h e c o r r e l a t i o n e l l i p s e s . i n t h i s example,
The c o r r e l a t i o n r a d i i a r e more than 10 miles
so t h e g r i d spacing chosen f o r t h e measurements (5 m i l e s )
i s almost o p t i m a l exceed 20%.
and t h e average c o r r e l a t i o n s over 6 surveys
The c o r r e l a t i o n s were c a l c u l a t e d i n f o u r d i r e c t i o n s w i t h 45'
(upper panel). increment.
panel)
f o r t h e data o f a
i n terms o f i n t e r p o l a t i o n e r r o r s :
t h e l a t t e r do n o t
However, some o f t h e o t h e r RDT d a t a gave t o o s h o r t c o r r e l a t i o n
l e n g t h s i n comparison w i t h t h e g r i d spacing.
As a r u l e , t h e parameters
which have l a r g e e r r o r norms a r e u n c o r r e l a t e d a t t h e d i s t a n c e o f t h e g r i d spacing. Various experiments show t h a t t h e i n t e r p o l a t e d maps are v i s u a l l y n o t very sensitive t o the variations o f the c o r r e l a t i o n functions.
However,
t h i s c o n c l u s i o n does n o t apply t o t h e study o f t h e s p a t i a l d e r i v a t i v e s and t h e dynamical equations.
Generally, f o r repeated surveys (close i n t i m e t o
each o t h e r ) t h e averaged c o r r e l a t i o n f u n c t i o n s were used.
For some cases
t h e c o r r e l a t i o n l e n g t h s were increased t o o b t a i n more e f f e c t i v e p o i n t s f o r the interpolation.
SYNOPTIC SCALE DISTRUBANCES The r e l a t i v e dynamic topography (RDT),
c a l c u l a t e d by formula (l), i s
t h e main o b j e c t o f our i n t e r e s t f o r two reasons. small
error
norms
and s u f f i c i e n t l y l a r g e c o r r e l a t i o n l e n g t h s t o ensure
correct interpolation. property:
it i s
F i r s t , t h e RDT has f a i r l y
Second, and more i m p o r t a n t l y , t h e RDT i s a dynamical
t h e geostrophic
stream f u n c t i o n o f r e l a t i v e c u r r e n t s .
442
a)
1
1
0
0
-1
-1
1
30 -1 -
Figure 3. Spatial correlation functions of the r e l a t i v e dynamic topography (RDT) between 30 and 70 d b , D (70,30), in four directions (indicated by subscripts). Circles represent data points, vertical bars indicate the 90% confidence l i m i t s , and solid l i n e s are the r e s u l t s of two-dimensional analyt i c a l f i t s . Upper panel shows the average correlation functions over s i x 1980 surveys; lower panel shows r e s u l t s of the single survey 18/2.
443
Indeed, f o r t h e nondimensional parameter values c h a r a c t e r i s t i c o f the B a l t i c Proper,
t h e c o n d i t i o n s f o r t h e quasi-geostrophic approximation t o be v a l i d
a r e s a t i s f i e d i n t h e low frequency range.
However, i t should be emphasized
t h a t t h e r e f e r e n c e l e v e l f o r geostrophic c a l c u l a t i o n s o f t h e absolute veloc i t y by t h e dynamical method i s n o t w e l l known. proposed (Fomin, currents.
Several methods have been
1964), b u t i n t h i s s e c t i o n we s h a l l o n l y discuss r e l a t i v e
I f t h e RDT i s c a l c u l a t e d by (l), i t represents t h e v e l o c i t y o f
t h e upper l a y e r r e l a t i v e t o t h a t o f t h e l o w e r l a y e r i n t h e t r a d i t i o n a l sense o f a stream f u n c t i o n .
An RDT change o f 1 dyn.cm over 5 m i l e s corresponds t o
a r e l a t i v e c u r r e n t speed o f 8.65 cm/sec.
I f t h e isopycnals are displaced
upward, t h e RDT anomaly i s negative, and'vice versa. Three examples o f t h e e v o l u t i o n o f e d d y l i k e phenomena can be described on t h e b a s i s o f r a p i d l y succeeding surveys i n t h e BOSEX area. The d a t a o f August 1979 show an e d d y l i k e p e r t u r b a t i o n o f t h e RDT w i t h a The l e f t - h a n d s i d e o f Figure 4 shows t h r e e RDT
diameter o f 20 km (9 2Rd). i n t e g r a l s between d i f f e r e n t
levels
for
survey
15/1; t h e r i g h t - h a n d side
shows t h e same i n t e g r a l s f o r survey 15/2 t e n days l a t e r . o f t h e thermocline [D(30,10)]
The deformations
and o f t h e h a l o c l i n e [D(90,30)]
have the same
s i g n , and b o t h r e f l e c t an upward displacement from t h e mean p o s i t i o n i n t h e center o f the perturbation.
The d i f f e r e n c e i n geostrophic c u r r e n t s above
and below t h e h a l o c l i n e i s 5 t o 7 cm/sec.
The comparison o f t h e two s e r i e s
o f maps shows t h a t t h e eddy migrates 10 m i l e s along t h e average isobaths i n
10 days ( m i g r a t i o n speed the r i g h t .
3
2 cm/sec),
w i t h t h e shallower water remaining on
I t can a l s o be seen t h a t t h e a x i s o f t h e eddy i s n o t v e r t i c a l
( t h e c e n t e r s do n o t c o i n c i d e i n t h e h a l o c l i n e and thermocline maps) and i t appears t h a t t h e thermocline p e r t u r b a t i o n migrates f a s t e r than t h a t o f the halocline. dent:
The i n t e n s i f i c a t i o n o f the h a l o c l i n e p e r t u r b a t i o n i s a l s o e v i -
t h e r e l a t i v e r o t a t i o n a l speed doubles i n 10 days. The maps o f surveys 1 3 / 1 t o 13/4 (Figure 5) show a p o s i t i v e e d d y l i k e
RDT p e r t u r b a t i o n o f weak i n t e n s i t y i n t h e upper c e n t r a l p a r t o f t h e area. The p e r t u r b a t i o n appears in t h e ha1o c l ine o n l y , because no thermocl ine has developed y e t .
On t h e b a s i s o f a s i n g l e survey,
i t c o u l d be hypothesized
t h a t t h e p e r t u r b a t i o n i s caused by i n t e r n a l waves.
However, t h e presence o f
t h e p e r t u r b a t i o n on t h r e e successive d a i l y maps (13/1-3) i s convincing e v i dence t h a t t h e p e r t u r b a t i o n ( l o w e r i n g o f isopycnals, w i t h axes
Rx z 1 5 km,
R E 20 km) i s a s y n o p t i c f e a t u r e . The speed o f t h e p e r t u r b a t i o n d r i f t i s Y o f t h e o r d e r o f 1.5 cm/sec w i t h t h e shallower water on t h e r i g h t . Although t h e c u r r e n t speeds a r e t o o weak f o r a c o r r e c t comparison,
the r e l a t i v e
c u r r e n t s a t t h e c e n t r a l s t a t i o n , determined on t h e b a s i s o f mooring s t a t i o n data and averaged over 5 days, correspond s a t i s f a c t o r i l y t o t h e geostrophic
444
1 ( 90,lO)
1511 5.-6.08.79
I(90,301
1511: 5.-6.08.79
D (90101
1512:15.-16.08.:
D (90,30)
1512 : 15-16.08:
03
N30,lO)
1512:15.-16.08.7!
1511: 5.-6.08.79.
0
F i g u r e 4.
5
10
6 miles
Maps o f RDT anomalies ( i n dynamic cm) f o r surveys 15/1 (on t h e
l e f t ) and 15/2 (on t h e r i g h t ) .
The contour i n t e r v a l i s 0 . 1 dyn.cm.
445
D(90,30)
F i g u r e 5.
1313 : 29.0579
Maps o f RDT anomalies ( i n dynamic cm) f o r surveys 13/1-4.
contour i n t e r v a l i s 0 . 1 dyn.cm.
The
446
v e l o c i t y determined f r o m RDT.
On t h e r i g h t s i d e o f t h e area, t h e edge o f a
l a r g e negative RDT anomaly can be observed.
An e x t e n s i o n
of survey 13/3
a l l o w s us t o document t h e scales .and shape o f t h i s p e r t u r b a t i o n .
The halo-
c l i n e i n t e r s e c t s t h e bottom slope a t t h e r i g h t edge o f t h e survey extension (decreasing depth).
The anomaly i s t o n g u e l i k e i n shape, and i t extends 40 The streamlines o f D(90,30) remain unclosed along
km i n t h e y - d i r e c t i o n .
t h e l i n e where t h e h a l o c l i n e disappears because o f decreasing depths. The data o f surveys 18/1 t o 18/3 ( e a r l y summer 1980) show an i n t e n s i v e and l a r g e e d d y l i k e p e r t u r b a t i o n .
The isopycnals a r e d i s p l a c e d upward by
more than 20 m i n t h e c e n t e r o f t h e eddy.
The t o t a l depth i s about 100 in.
The diameter o f t h i s eddy i s more than t w i c e as l a r g e as t h a t o f the,.eddies p r e v i o u s l y observed; i t exceeds 40 km.
The d i f f e r e n c e i n geostrophic c u r -
r e n t between t h e 60 m and 90 m l a y e r s i s about 20 c d s e c . o f D(70,30) f o r t h r e e d i f f e r e n t surveys ( F i g . perturbation.
I n 9 days ( i . e .
The contour maps
6) show t h e e v o l u t i o n o f t h e
between survey 18/1 and 18/2), t h e c e n t e r o f
t h e p e r t u r b a t i o n moves 5 t o 10 m i l e s eastward across t h e isobaths, and i t "escapes"
t h e survey area.
A t t h e p e r i p h e r y o f t h e eddy, t h e l i n e s o f con-
s t a n t RDT become more d i s t o r t e d than i n p r e v i o u s surveys; t h e contour l i n e s on t h e l e f t - h a n d s i d e o f t h e area tend t o become p a r a l l e l t o t h e isobaths, Survey 18/3 (which covers a d i f f e r e n t
w i t h shallower water on t h e r i g h t .
area s e l e c t e d on t h e b a s i s o f t h e observed m i g r a t i o n o f t h e eddy c e n t e r , and which was completed immediately a f t e r survey 18/2) r e v e a l s a " s p l i t t i n g " o f t h e l a r g e eddy i n t o two s m a l l e r ones w i t h diameters o f about 20 km. t i m e o f t h e l a s t survey,
A t the
t h e s p l i t t i n g i s n o t f u l l y completed and t h e p e r -
t u r b a t i o n s have a common area.
I t must a l s o be p o i n t e d o u t t h a t t h e t i m e
e v o l u t i o n o f such an i n t e n s i v e p e r t u r b a t i o n i s uneven.
Between surveys 18/1
and 18/2, t h e time e v o l u t i o n was moderately slow, b u t survey 18/3 shows a "collapse-like
behavior",
i . e changes i n t h e isopycnal depths occur much
f a s t e r than d u r i n g p r e v i o u s days.
This r a p i d s p l i t t i n g o f t h e p e r t u r b a t i o n
leads t o a rearrangement o f t h e v e r t i c a l s t r u c t u r e o f t h e d e n s i t y anomalies. The
isopycnals
gether" f o r 7.5
observed d u r i n g surveys
5
ut
5
18/1 and 18/2 a r e d i s p l a c e d " t o -
8.5, and t h e c r o s s - c o r r e l a t i o n between pressure a t ut
= 7.0 and RDT D(70,30)
i s l a r g e r than 0.95.
For t h e d a t a o f survey 18/3,
t h e l a t t e r c o r r e l a t i o n i s reduced t o 0.8 and l e s s . .We f i n d i t a l s o i n t e r e s t i n g t o analyze t h e temperature f i e l d on given isopycnal surfaces. (above t e h a l o c l i n e )
F i g u r e 7 shows temperature maps on t h e s u r f a c e at = 6.5 f o r surveys 18/1 and 18/2.
Because t h e c o r r e l a t i o n
r a d i i a r e f a i r l y small, these maps were n o t c o n s t r u c t e d by optimal i n t e r p o lation,
b u t by s p l i n e
c e n t e r o f t h e eddy;
interpolation.
t h e l o c a l minimum,
The temperature i s maximum a t t h e l o c a t e d a t a d i s t a n c e o f about 10
447
D(70.301 18/1: 30.-31.05.80
0
Fig.
6.
5
10
15 miles
Maps o f ROT anomalies ( i n dynamic cm) f o r surveys 18/1 to 18/3.
The contour i n t e r v a l surveys 18/2 and 18/3.
i s 0.2 dyn.cm f o r survey 18/2, and 0 . 1 dyn.cm f o r
448
Fig. 7.
15 miles
10
5
0
Maps o f temperature on t h e isopycnal s u r f a c e ut = 6.5 f o r surveys
18/1 and 18/2. The contour i n t e r v a l i s 0 . 5 O C . miles, i s not r e f l e c t e d i n the density f i e l d .
This l o c a l minimum seems t o
have a s t a b l e o r i e n t a t i o n w i t h respect t o t h e c e n t e r o f t h e eddy. v a r i a t i o n s i n temperature a r e l a r g e ( Z 4°C
w i t h e r r o r z 1°C)
The
compared t o
oceanic d a t a (see Woods and M i n n e t t , 1979, who r e p o r t v a r i a t i o n s o f about 0.1"C.)
The temperature d i s t r i b u t i o n on at-surfaces
can be considered a
t r a c e r under t h e assumption t h a t t h e process r e s p o n s i b l e f o r t h e f o r m a t i o n o f t h e anomalies i s slow.
I n such a case, t h e water i n t h e c e n t e r o f t h e
eddy should m i g r a t e w i t h t h e eddy, and t h e e d d y l i k e p e r t u r b a t i o n c o u l d n o t be o f wavelike o r i g i n s i n c e mass i s a c t u a l l y t r a n s p o r t e d i n t h e d i r e c t i o n which would be t h a t o f t h e phase speed.
The o t h e r p o s s i b i l i t y i s t h a t t h e
eddy permanently generates t h a t k i n d o f anomalies.
Another f e a t u r e o f
survey 18/1 i s t h a t t h e s a l i n i t y above t h e h a l o c l i n e i s markedly h i g h e r a t t h e c e n t e r o f t h e eddy than elsewhere (,in pressure coordinate); vides
evidence t h a t
pumping o r m i x i n g processes
upwell
t h i s pro-
salty halocline
waters. F i g u r e 8 shows maps o f RDT D(70,30) o f t h e s i n g l e surveys,
number 19/1.
and temperature a t ut = 6.5 f o r one
A n e g a t i v e RDT p e r t u r b a t i o n i s l o c a t e d
i n t h e upper r i g h t corner o f t h e area, b u t t h e contour l i n e s a r e n o t closed.
449
0
F i g . 8. at
= 6.5
~~
‘15 miles
10
5
Maps o f RDT ( l e f t panel) and temperature on t h e isopycnal surface ( r i g h t panel)
for
The contour i n t e r v a l s a r e 0.1
survey 19/1.
dyn.cm f o r RDT and 0.5OC f o r temperature. Assuming t h a t t h e p e r t u r b a t i o n i s e d d y l i k e , r o u g h l y equal t o 30 t o 40 kin.
t h e diameter appears t o be
The displacements o f t h e thermocline and
h a l o c l i n e appear t o have t h e same sign.
The p a t t e r n o f t h e temperature
f i e l d ( r i g h t panel) i s s i m i l a r t o t h a t o f surveys 18/1 and 18/2:
t h e tem-
p e r a t u r e i s maximum a t t h e c e n t e r o f t h e p e r t u r b a t i o n and a l o c a l minimum i s observed nearby. Some o t h e r p e r t u r b a t i o n s have been observed d u r i n g some o f t h e s i n g l e surveys conducted i n t h e BOSEX area.
The RDT D(70,30) o f survey 17/1 i n d i -
cates a j e t l i k e anomaly (contour l i n e s almost p a r a l l e l t o t h e isobaths) i n t h e western p a r t o f t h e area.
As observed i n t h e surveys o f s p r i n g and
e a r l y summer o f 1980, t h e isopycnals are deeper a t t h e western edge o f the area where t h e water i s shallower. l i k e p e r t u r b a t i o n s with’diameters
The data o f survey 20/1 show t w o eddyo f about 20 km (2Rd).
depressed a t t h e c e n t e r o f b o t h p e r t u r b a t i o n s ,
The thermocline i s
b u t t h e h a l o c l i n e i s de-
pressed i n one case and u p l i f t e d i n t h e other. The processing o f t h e 1981 d a t a i s n o t completed y e t . d e s c r i b e some o f t h e p e r t u r b a t i o n s w i t h o u t f i g u r e s .
Hence, we s h a l l
450
Two surveys
- 22/1
and 22/2
-
were c a r r i e d o u t i n t h e Bornholm Basin a t
t h e end o f A p r i l 1981.
The h a l o c l i n e i n t h e Bornholm Basin i s sharper than
i n t h e B a l t i c Proper.
The Bornholm Basin and t h e S t o l p e Furrow ( i n t h e
e a s t e r n p a r t o f t h a t basin) are t h e regions through which t h e s a l t y N o r t h Sea waters e n t e r t h e B a l t i c Proper i n t h e bottom l a y e r s .
Several d e n s i t y
and ROT anomalies were observed i n the Bornholm Basin, b u t t h e i r s t r u c t u r e i s more complicated than i n t h e BOSEX area.
A c h a r a c t e r i s t i c feature i s the
r a i s i n g o f the isopycnals i n t h e shallower p a r t s o f t h e working area; t h e converse was observed i n t h e BOSEX area.
I n t h e c e n t r a l p a r t of t h e working
area, t h e c r o s s - c o r r e l a t i o n s between t h e displacements o f d i f f e r e n t isopycn a l s are poor:
some displacements even change s i g n over small
v e r t i c a l i n t e r v a l s w i t h i n a given p e r t u r b a t i o n .
(5-;10
m)
Hence, i t i s hard t o be-
l i e v e t h a t t h e observed p e r t u r b a t i o n s are synoptic scale eddies.
Unfortu-
n a t e l y , no e r r o r norm estimates are a v a i l a b l e . I n June o f 1981, f i v e surveys were performed i n t h e Gotland area ( n o r t h
o f t h e BOSEX area) d u r i n g t h e j o i n t Soviet-German Physical/Chemical ment.
maps o f surveys 23/3 t o 23/5. b a t i o n i n RDT D(80,50)
I n survey 23/3 a p o s i t i v e , t o n g u e l i k e p e r t u r -
appears i n t h e upper l e f t p a r t o f t h e area;
p e r t u r b a t i o n extends 20 km i n t h e x - d i r e c t i o n . 23/4),
Experi-
Two d i s t i n c t p e r t u r b a t i o n s and t h e i r e v o l u t i o n can be f o l l o w e d on t h e the
Over t h e n e x t 5 days (survey
t h e p e r t u r b a t i o n seems t o expand along t h e isobaths:
the t i p o f the
tongue migrates 20 km i n t h e y - d i r e c t i o n and t h e tongue widens t o 30 km i n the x-direction.
I n t h e upper p a r t o f t h e p e r t u r b a t i o n , a s l i g h t e d d y l i k e
c e n t e r begins t o t a k e shape.
On the map o f survey 23/5 (8 days l a t e r ) , t h e
w i d t h o f t h e p e r t u r b a t i o n has decreased t o 20 km i n t h e x - d i r e c t i o n , and t h e eddylike center i s stretched out i n the y-direction.
The o t h e r disturbance
i s a n e g a t i v e e d d y l i k e p e r t u r b a t i o n , 15 t o 20 km i n diameter, l o c a t e d i n t h e right-central 23/4,
p a r t o f t h e map o f survey 23/3.
Between surveys 23/3
and
we c o l l e c t e d data along a s e c t i o n o f t h e eddy w i t h a p r o f i l i n g i n t e r -
val o f 1 mile.
The r e s u l t s show t h a t t h e RDT v a r i e s smoothly between t h e
g r i d s t a t i o n s o f t h e survey and t h a t i n t e r p o l a t i o n gives n e a r l y t h e same p i c t u r e as do measurements on a f i n e h o r i z o n t a l scale. 23/4,
On t h e map o f survey
t h e eddy i s a t t h e same place, b u t i n t h e upper l e f t p a r t o f t h e eddy
t h e s t r e a m l i n e s o f t h e r e l a t i v e v e l o c i t y have become denser because t h e positlve
RDT p e r t u r b a t i o n described above i s impinging on t h e negative
eddylike perturbation.
A f t e r 8 days (survey 23/5),
t h e eddy has migrated
about 11-14 km along t h e isobaths towards t h e n o r t h e a s t e r n corner o f t h e area, i . e . w i t h shallow water on t h e r i g h t .
M i g r a t i o n along t h e isobaths i s
c h a r a c t e r i s t i c o f b o t h p e r t u r b a t i o n s i n s p i t e o f t h e f a c t t h a t t h e average bottom slopes have completely d i f f e r e n t o r i e n t a t i o n s below t h e d i f f e r e n t perturbations.
451
THEORETICAL INTERPRETATION G e n e r a l l y speaking, t h e t h e o r y o f s y n o p t i c scale motions i s complicated and needs f u r t h e r study.
The f i r s t eddies observed i n t h e ocean were i n t e r -
p r e t e d as t h e s u p e r p o s i t i o n o f l i n e a r b a r o t r o p i c and b a r o c l i n i c Rossby waves (Koshlyakov and Grachev, 1973; McWilliams and F l i e r l , 1976).
I n t h i s sec-
t i o n , we do n o t t r y t o develop general t h e o r i e s , b u t we l o o k f o r t h e simpl e s t p o s s i b l e quasi-geostrophic
motions c o n s i s t e n t w i t h parameter values
c h a r a c t e r i s t i c o f t h e B a l t i c Sea, and we p o i n t o u t some d i f f e r e n c e s between t h e l i n e a r regimes o f t h e oceans and o f deep seas.
I n p a r t i c u l a r , some
p e c u l a r i t i e s o f topographic waves and b a r o c l i n i c i n s t a b i l i t y o f sheared mean c u r r e n t s a r e discussed i n connection wifih observational r e s u l t s . L e t x,y,z and n o r t h ,
be C a r t e s i a n coordinates w i t h x and y d i r e c t e d t o t h e e a s t
and z p o i n t i n g down w i t h z = 0 a t t h e undisturbed surface.
sketch o f t h e model i s presented i n Figure 9. sloping i n the x-direction,
i.e.
A
Consider a b a s i n w i t h bottom
w i t h depth H = Ho + a x , and assume t h a t a
<< 1, so t h a t as a f i r s t approximation t h e d i f f e r e n c e between H and Ho can be neglected f o r moderate h o r i z o n t a l scales except i n terms i n v o l v i n g t h e depth g r a d i e n t s .
L e t us assume t h a t t h e water column c o n s i s t s o f two l a y e r s
o f thicknesses hl
and h2 r e s p e c t i v e l y , and constant ( b u t d i f f e r e n t ) V a i s a l a
frequencies N1 and N2. a t the interface.
A t t h e same time t h e d e n s i t y i s assumed continuous
Consider a l s o a mean f l o w
i s c o n s t a n t i n t h e upper l a y e r (Vs) (Vs
-
Vb)/hp,in
t h e lower l a y e r .
v(z) i n t h e y - d i r e c t i o n , which
and has a constant v e r t i c a l g r a d i e n t ,
The E a r t h ' s r o t a t i o n i s taken i n t o account
by t h e usual 8-plane approximation, f = f o + By, where t h e d i f f e r e n c e between t h e C o r i o l i s parameter f and t h e constant f o can be neglected except i n t h e y - d e r i v a t i v e o f f.
The l i n e a r i z e d quasi-geostrophic
equation ex-
p r e s s i n g t h e c o n s e r v a t i o n o f p o t e n t i a l v o r t i c i t y can be w r i t t e n as f o l l o w s
:ig.
9.
Sketch o f t h e t w o - l a y e r model.
452
where JI i s t h e stream f u n c t i o n , t denotes t h e t i m e v a r i a b l e and A Laplace's The s u b s c r i p t k = 1,2 i d e n t i f i e s t h e upper and lower l a y e r r e -
operator. spectively.
The v e r t i c a l boundary c o n d i t i o n s w i l l be g i v e n l a t e r .
Their
form depends on t h e s o l u t i o n one i s l o o k i n g f o r , and t h e i r p h y s i c a l meaning i s t h e requirement o f zero normal v e l o c i t y a t t h e surface and a t t h e bottom and o f c o n t i n u i t y a t t h e i n t e r f a c e . A
Topographic
Waves
L e t us f i r s t consider t h e case o f topographic waves (Rhines, w i t h o u t mean f l o w
= 0).
model (hl waves.
(i = 0).
1970)
and, f o r s i m p l i c i t y , l e t us analyze a one-layer
The s u b s c r i p t s can then be o m i t t e d f o r these topographic
We l o o k f o r wave s o l u t i o n s o f t h e form
JI = O(z) exp [ i ( k x where $(z)
+
ly
-
wtll
(3)
i s t h e v e r t i c a l s t r u c t u r e f u n c t i o n , k and 1 a r e t h e wavenumbers The s u b s t i t u t i o n o f (3) i n t o equation (2) g i v e s t h e
and w i s t h e frequency.
f o l l o w i n g e q u a t i o n f o r $(z): d
2
5
- (q2 (?9) dz f
where q2 = k2 + 1'.
*dz= o
+
E) $ w
= 0,
The boundary c o n d i t i o n s are
a t z = ~ ,
2 !!t=-T@ atz=H. dz The 'system (4).
(5), (6)
has two classes o f s o l u t i o n s depending on
whether q2 + pk/w i s p o s i t i v e o r negative. 2 I f 0 + pk/w > 0, t h e s o l u t i o n i s
453
and t h e transcendental equation d e f i n i n g w i s
Parameter values c h a r a c t e r i s t i c o f t h e BOSEX area are: sec-l,
N =
lo-'
sec-l,
I Axl = I AY I
H = 100 m,
01
f = 1.25~10-~
= 5 ~ 1 0 - ~p , = 1.3~10-'~ cm-l sec-l, and
= 40 km, where Ax = 2n/k, and A = 2n/l. For these y- 2 values, t h e second term under t h e r a d i c a l i s o f order 10 . A s long as t h e parameters vary w i t h i n reasonable l i m i t s , t h e r o l e o f p does n o t increase
wavelengths
considerably.
Therefore,
i n t h e Ba1tj.c Sea, t h e p - e f f e c t can be neglected
f o r t h e " f a s t b a r o c l i n i c " waves (Rhines,
1977), and equation (8) takes t h e
form o f t h e well-known d i s p e r s i o n r e l a t i o n f o r topographic waves
I n t h e l i m i t NrlH/f
>> 1, (9) reduces t o t h e d i s p e r s i o n equation f o r
bottom-trapped topographic waves, w = -N a s i n e , where 0 i s t h e angle between t h e wave v e c t o r and t h e bottom slope. For NqH/f << 1, equation (9) 2 becomes w = - a l f / r l H , a p p r o p r i a t e f o r b a r o t r o p i c waves. Since f3 has no e f f e c t on t h e s o l u t i o n ,
t h e o r i e n t a t i o n o f t h e bottom slope and o f t h e
c o o r d i n a t e axes can be a r b i t r a r y . I f q2 + pk/w < 0, t h e s o l u t i o n describes slow b a r o c l i n i c waves.
p-effect
dominates t h a t o f t h e bottom slope;
The
t h e presence o f a slope i s
i m p o r t a n t , b u t t h e v a r i a t i o n o f i t s magnitude has o n l y minor i n f l u e n c e .
For
t h e parameter values corresponding t o t h e B a l t i c Sea, t h e p e r i o d s o f these waves are l o n g e r than years.
Therefore, such waves a r e n o t r e l e v a n t t o t h e
study o f s y n o p t i c v a r i a b i l i t y . Consequently, i n t h e absence o f a mean shear f l o w and w i t h a l i n e a r l y s l o p i n g bottom,
only bottom-intensified o r nearly barotropic ( f o r
wavelengths) topographic waves can e x i s t .
large
These waves have no modal s t r u c -
t u r e and a s i n g l e frequency w corresponds t o each p a i r o f wavenumbers k and 1.
As l o n g as d+(z)/dz
does n o t change i t s ( p o s i t i v e ) s i g n i n t h e v e r t i c a l
d i r e c t i o n , t h e displacements o f t h e f r e e surface and o f t h e isopycnal surfaces have t h e same sign.
This i s t h e reason why no attempt was made t o
d i s t i n g u i s h cyclones and a n t i c y c l o n e s i n t h e d e s c r i p t i o n o f t h e experimental data. then,
I f t h e eddies a r e formed by a s u p e r p o s i t i o n o f topographic waves, u n l i k e t h e oceanic case,
an a n t i c y c l o n e has a c o l d c e n t e r i n the
t h e r m o c l i n e and a s a l t y c e n t e r i n t h e h a l o c l i n e ; a cyclone has warm and
454
f r e s h c e n t e r s r e s p e c t i v e l y i n t h e thermo- and h a l o c l i n e . Since
N # constant f o r t h e observed s t r a t i f i c a t i o n , t h e problem consis-
t i n g o f equations ( 4 ) , d i f f e r e n c e method.
(5),
i s homogeneous, so t h a t ,
quency
ui
( 6 ) was a l s o solved n u m e r i c a l l y u s i n g a f i n i t e
The system o f l i n e a r equations f o r d i s c r e t e @(z) values i n order t o obtain n o n t r i v i a l solutions, the f r e -
has t o be such t h a t t h e determinant o f t h e system i s equal t o zero.
F i g u r e 10 shows v a r i o u s p r o f i l e s o f $(z) summer s t r a t i f i c a t i o n . of A
Y
calculated f o r a typical
The v a r i o u s p r o f i l e s correspond t o d i f f e r e n t values
(we assume k = 0), and t h e y are normalized by t h e c o n d i t i o n
F i g . 10.
V e r t i c a l s t r u c t u r e f u n c t i o n o f topographic waves, $(z),
August s t r a t i f i c a t i o n .
f o r the
The v a r i o u s curves correspond t o d i f f e r e n t values o f
The wavenumber i n t h e x - d i r e c t i o n , A,,. cases.
k,
i s s e t equal t o zero i n a l l
455
S i n c e g(z) r e p r e s e n t s t h e a m p l i t u d e o f t h e stream f u n c t i o n , i t i s p r o F o r A = 1 0 km, we f i n d t h a t t h e Y There a r e no v e r t i c a l shear i n
portional t o the horizontal velocity.
motion i s concentrated i n t h e bottom layers. the
horizontal
velocity
and
no
displacements o f
the
isopycnals
i n the
thermocline. F o r A = 200 km, t h e f u n c t i o n g(z) corresponds t o t h e baroY t r o p i c regime, and t h e whole w a t e r column moves w i t h t h e same v e l o c i t y . For i n t e r m e d i a t e wavelengths,
t h e r e a r e v e r t i c a l shears o f v e l o c i t y i n b o t h t h e
t h e r m o c l i n e and t h e h a l o c l i n e .
The i s o p y c n a l displacements i n t h e thermo-
5
A < 80 km. y .The o b s e r v a t i o n s p r e s e n t e d i n F i g u r e 4 can be modeled by t h e superposi-
c l i n e a r e l a r g e s t f o r 20 km t i o n o f two p l a n e waves, km. are:
F o r such a model,
+
c = (0;
( k , 1) and (-,k,l),w i t h Ax = 40 km, and A = -40 Y t h e n u m e r i c a l l y d e t e r m i n e d phase speed and p e r i o d
3 ) c d s e c ; T = 15.6 days.
The e s t i m a t e d m i g r a t i o n speed o f
t h e RDT p e r t u r b a t i o n between surveys 1 5 / 1 and 15/2 i s 2 cm/sec. a c c o u n t t h e u n c e r t a i n t i e s a f f e c t i n g t h e parameter v a l u e s , between t h e model and t h e o b s e r v a t i o n i s n o t s i g n i f i c a n t . t h e speed o f m i g r a t i o n o f t h e RDT p e r t u r b a t i o n ,
Taking i n t o
the difference
The d i r e c t i o n and
as w e l l as t h e presence o f
g e o s t r o p h i c v e l o c i t y shears i n t h e t h e r m o c l i n e and i n t h e h a l o c l i n e , c o r respond s a t i s f a c t o r i l y t o t h e t o p o g r a p h i c wave model. The o b s e r v a t i o n s shown i n F i g u r e 5 can be i n t e r p r e t e d i n a s i m i l a r way.
t
U s i n g e s t i m a t e d wavelengths Ax = 25 km and A = -40 km, t h e t h e o r y y i e l d s Y = (0; 1.9) cm/sec and T = 23.8 days. On t h e b a s i s o f t h e e x p e r i m e n t a l d a t a , t h e m i g r a t i o n speed o f t h e RDT p e r t u r b a t i o n i s 1 . 5 cm/sec.
Hence, we be-
l i e v e t h a t t h e c o n c l u s i o n o f t h e p r e v i o u s paragraph i s a l s o v a l i d i n t h i s case. B.
Baroclinic i n s t a b i l i t y L e t us now c o n s i d e r e q u a t i o n (2)
with
p =
0, a p p l i e d t o a t w o - l a y e r
f l u i d w i t h o u t d e n s i t y jump, i n t h e presence o f a sheared mean f l o w , i ( z ) , described a t t h e beginning o f t h i s section.
as
We assume t h e s o l u t i o n t o b e o f
t h e form
$k = Re ($,(z) where b o t h gk(z)
exp[il(y
-
ct)]]
s i n kx
and t h e phase speed,
s a t i s f i e s t h e equation
c,
, a r e complex.
(10) The f u n c t i o n g k
4 56
s u b j e c t t o t h e f o l l o w i n g boundary c o n d i t i o n s : a t z = 0,
dz
The general s o l u t i o n o f equation (11) i s a sum o f h y p e r b o l i c s i n e and cosine, where t h e c o e f f i c i e n t s must be determined so as t o s a t i s f y t h e boundary c o n d i t i o n s (12)-(15).
The system o f l i n e a r equations f o r t h e determin-
a t i o n o f t h e c o e f f i c i e n t s i n t h e general s o l u t i o n i s homogenous; i n o r d e r t o o b t a i n a n o n t r i v i a l s o l u t i o n , t h e phase speed c must be such t h a t t h e d e t e r minant i s equal t o zero.
Therefore, c must s a t i s f y a q u a d r a t i c equation.
I n some parameter range, t h e phase speed has a nonzero imaginary p a r t ; t h e corresponding s o l u t i o n s describe unstable waves.
The c a l c u l a t i o n s r e p o r t e d
here were made by M. Pajuste. I n t h i s paper, we p r e s e n t o n l y t h e r e s u l t s f o r t h e one-layer case (hl
0).
(The s o l u t i o n s f o r t h e two-layer
cated.)
=
b u t more compli-
The phase speed i s given by
vs c =
case a r e s i m i l a r ,
+ Vb + c 0 2
--vs Y
vb [ ( V s
vs
-
Vb 2
t
{(
-
Vb)(coth y
+
co 2
1
1 - -1 1(
-
co ( t a n h y
-
y ) I l +i
,
where co i s the phase speed o f topographic waves w i t h o u t mean f l o w (co < 0 if
c1
> 0) and y = NrlH/f.
In general, t h e phase speed i s complex, c = c r
t h e stream f u n c t i o n , JI. i s
+ ic
i' The s o l u t i o n f o r
JI = Re((@, + iQi) e x p [ i l ( y - c r t ) ] ] s i n kx exp(1 cit) = I $I cos (Icy - c r t + e(z)]) s i n kx exp(1 tit),
457 where (Iand , Oi f u n c t i o n $(z),
a r e t h e r e a l and imaginary p a r t s o f t h e v e r t i c a l s t r u c t u r e
I $1
2 4 , and t h e z-dependent phase, e ( z ) , = ($, 2 + (I~)
i s given
by
I f t h e phase speed has a nonzero imaginary p a r t , ci
# 0, we a l s o have
Q i # 0; t h e waves a r e then unstable, and t h e i r amplitude increases w i t h t i m e as exp(1
tit).
The phase i s n o t constant v e r t i c a l l y , and t h e axes o f eddy-
l i k e p e r t u r b a t i o n s are i n c l i n e d w i t h re?pect t o t h e v e r t i c a l . The t w o - l a y e r model w i t h p = 0 contains, as p a r t i c u l a r cases, t h e model o f Tang (1975) (corresponding t o a = 0, Vb = O), and t h e b a r o c l i n i c i n s t a b i l i t y model o f Eady (1949) ( a = 0, Vb = 0, hl = 0). For t h e c a l c u l a t i o n s described h e r e a f t e r , we used t h e f o l 1owing param e t e r values:
2.5-10-2 s e c - l ;
H = 100 in,
hl
= 60 m, h2 = 40 m, N1 = lo-* sec-’,
f o r t h e one-layer case, we chose N = 1.25.10
2
sec-l.
N2
=
Since
t h e observed RDT anomalies were almost c i r c u l a r , o n l y waves f o r which Ax = A
Y
( o r k = 1) were s t u d i e d . The i n s t a b i l i t y r e g i o n f o r a = 0, h
1
= 0 i s independent o f t h e mean
d e r i v e d by Eady (1949).
(A > 2.6 f l Rd) a l l t h e waves are unstable, as Y The same r e s u l t holds f o r 01 = 0, hl # 0, b u t t h e
critical
equal
and f o r y < 2.399
flow,
values.
wavelength
is
to
44.5
km f o r t h e above-given
parameter
I f a > 0, t h e i n s t a b i l i t y r e g i o n depends on b o t h t h e wavelength and
t h e mean flow,
b u t waves a r e more unstable i f Vs
-
Vb > 0.
I n other words,
t h e s t a b i l i t y domain i s s m a l l e r when t h e d i r e c t i o n o f t h e upper l a y e r mean f l o w r e l a t i v e t o t h e bottom c u r r e n t i s opposed t o t h a t o f t h e phase speed o f t h e topographic waves. Two-folding times f o r t h e amplitudes o f t h e unstable waves are presented i n F i g u r e 11 as f u n c t i o n o f t h e wavelength A o f t h e mean c u r r e n t Vs and t w o - l a y e r
-
Vb.
f o r d i f f e r e n t shears Y’ For a = 0, t h e r e s u l t s obtained from t h e one-
models a r e close,
r e q u i r e s much g r e a t e r values of Vs model.
b u t f o r a = 5.10-4
-
t h e one-layer model
Vb f o r i n s t a b i l i t y than t h e two-layer
According t o t h e two-layer model, f o r a mean c u r r e n t d i f f e r e n c e o f
2.5 cm/sec between t h e s u r f a c e and bottom l a y e r s , t h e amplitude o f t h e most u n s t a b l e waves doubles i n 10 days. B a l t i c Sea. t o 5 Rd).
Both values are q u i t e r e a l i s t i c f o r t h e
These most u n s t a b l e waves correspond t o A ?? 50 t o 60 km (E 4 Y The dominating wavelength o f t h e RDT p e r t u r b a t i o n observed d u r i n g
surveys 1 8 / 1 and 18/2, estimated by t h e c o r r e l a t i o n f u n c t i o n , i s 80 t o 90 km; t h i s i s somewhat l a r g e r t h a n t h e scale o f t h e most unstable waves calcul a t e d from t h e b a r o c l i n i c i n s t a b i l i t y theory.
This d i f f e r e n c e , however, i s
4 58
I
a)
C)
(days) T2
241
I
16
i
8-
\. -.-.-.-.-.10.0
d)
i g . 11.
Two-folding times (T2)
f o r the amplitudes o f t h e u n s t a b l e waves as
The v a r i o u s curves correspond t o d i f f e r e n t ‘unctions o f t h e wavelength A Y’ Panels a and b show t h e r e s u l t s ,slues o f t h e mean v e l o c i t y shear Vs - Vb. t h e one-layer model, panels c and d those o f t h e t w o - l a y e r model. 4 lottom slope ci = 0 f o r panels a and c, and CY = 5.10 f o r b and d.
If
The
459
reasonably small, and we suggest t h a t t h i s RDT p e r t u r b a t i o n was generated by When t h e amplitude o f t h e wave reaches some c r i t i -
baroclinic instability. cal
value,
describe
t h e l i n e a r i z e d t h e o r y presented above ceases
the
further
development o f t h e waves:
growth p r e d i c t e d by (17)
t o be v a l i d t o
t h e i n f i n i t e amplitude
i s l i m i t e d by nonlinear,processes.
The data o f
survey 18/3 show t h e s p l i t t i n g o f a l a r g e and i n t e n s i v e eddy i n t o two s m a l l e r ones,
and t h a t i s one p l a u s i b l e mechanism which would l i m i t the
amp1 itude growth.
I t must be p o i n t e d o u t t h a t such quasi-geostrophic waves i n t h e presence o f shear mean f l o w a r e v e r y s e n s i t i v e t o parameter v a r i a t i o n s . i n c l i n a t i o n o f the v e r t i c a l
oceanic (Koshlyakov and Grachev, the theoretical
Some
a x i s o f p e eddy i s c h a r a c t e r i s t i c o f both 1973) and B a l t i c f i e l d observations, b u t
phase d i s t r i b u t i o n e(z)
v e r t i c a l g r a d i e n t s o f b o t h signs.
o f t h e unstable waves can have
I n the one-layer model, t h e amplitude
o f t h e unstable waves above a s l o p i n g bottom has maxima a t t h e surface and a t t h e bottom.
I n t h e two-layer
model,
( 0I
i s maximum a t t h e i n t e r f a c e
(upper boundary of t h e h a l o c l i n e ) , and t h e amplitude decreases more r a p i d l y towards t h e bottom than towards t h e surface. solutions
for
the
above-mentioned models.
For s t a b l e waves t h e r e are t w o I n the one-layer
model,
one
v e r t i c a l s t r u c t u r e f u n c t i o n $ ( z ) decreases monotonously w i t h depth, whereas t h e o t h e r increases.
For t h e two-layer model, b o t h $(z)
are very s i m i l a r ;
t h e y a r e maximum a t t h e i n t e r f a c e and decrease f a s t e r towards t h e bottom t h a n towards t h e s u r f a c e (as f o r t h e unstable waves o f t h i s model). The l i n e a r quasi-geostrophic f e r e n t f r o m t h a t o f t h e ocean.
regime o f t h e B a l t i c Sea i s somewhat d i f I n t h e B a l t i c , t h e e f f e c t o f t h e bottom
slope overwhelms t h e p l a n e t a r y p - e f f e c t i n t h e constant slope model, b u t the r o l e o f t h e Rossby deformation r a d i u s as determinator o f t y p i c a l h o r i z o n t a l scales i s common t o b o t h t h e B a l t i c and t h e oceanic cases.
The mean c u r r e n t
shear i n t r o d u c e s new types o f waves, b u t they a r e s t i l l i n f l u e n c e d by the s l o p i n g bottom.
It should be emphasized t h a t t h e assumption o f a constant
bottom slope i s a s i m p l i f i c a t i o n , l i s parameter,
and t h a t t h e r e a l bottom topography i s
t h i s i s i n c o n t r a s t t o t h e r e g u l a r v a r i a t i o n o f t h e Corio-
very i r r e g u l a r :
which dominates ocean dynamics.
The p e r t u r b a t i o n s o f t h e
bottom topography and o f t h e atmospheric f o r c i n g , which can be important c o n t r i b u t o r s t o t h e dynamics o f synoptic scale motions, a r e n o t considered here. ON THE ESTIMATION
OF ABSOLUTE VELOCITIES
The c l a s s i c a l dynamic method (Fomin,
1964) allows t h e c a l c u l a t i o n o f
r e l a t i v e geostrophic c u r r e n t s from d e n s i t y data.
For t h e determination o f
a b s o l u t e v e l o c i t i e s , i t i s necessary t o know t h e c u r r e n t a t some reference
460
l e v e l e i t h e r from d i r e c t measurements (McWilliams,
1976) o r as a r e s u l t o f
The o l d i d e a t h a t deep water v e l o c i t i e s are small does n o t f i t
speculation.
i n t o d a y ' s conceptions.
S c h o t t and Stommel (1978) proposed t h e b e t a - s p i r a l
method t o overcome t h e problem o f the r e f e r e n c e l e v e l v e l o c i t y f o r l a r g e scale currents.
T h i s method uses t h e geostrophic r e l a t i o n s t o g e t h e r w i t h
t h e l i n e a r equation o f v o r t i c i t y conservation on a p-plane and i t assumes the immiscibility o f the density s t r a t i f i c a t i o n . The s y n o p t i c eddies cannot be t r e a t e d by t h e p - s p i r a l method, b u t t h e g e n e r a l i z a t i o n proposed by Korotayev and Shapiro (1978) a l l o w s t h e c a l c u l a t i o n o f t h e a b s o l u t e v e l o c i t y o f n o n s t a t i o n a r y quasi-geostrophic c u r r e n t s and eddies.
I n t h i s s e c t i o n , we use t h e method o f Korotayev and s a p i r o
w i t h a s l i g h t l y d i f f e r e n t formulation.
We choose t o use d e n s i t y as t h e
v e r t i c a l coordinate, w i t h t h e hope t h a t these "Lagrangian" coordinates m i g h t l e a d t o b e t t e r v e r t i c a l r e s o l u t i o n than " E u l e r i a n " pressure coordinates f o r t h e case o f t h e v e r y sharp d e n s i t y l a y e r i n g observed i n t h e B a l t i c . For t h e v e r t i c a l d i s c r e t i z a t i o n , consider a m u l t i - l a y e r e d water column consisting o f N layers o f constant densities.
The p o t e n t i a l v o r t i c i t y con-
s e r v a t i o n equation, which holds f o r each l a y e r , has t h e form
where u k and vk are t h e v e l o c i t i e s , o f the k-th layer.
Decompose t h e
6,
t h e v o r t i c i t y , and hk t h e t h i c k n e s s
By d e f i n i t i o n ,
i n t o a reference
leve
value, denoted by an overbar, p l u s a value r e l a t i v e t o t h a t r e f e r e n c e
velocities
and t h e v o r t i c i t y
eve1
denoted by a prime, as f o l l o w s : Uk=
-u +
Vk=
i
u;(
+ v;(
, ,
t,=E+t;,. Note t h a t t h e reference l e v e l values a r e independent o f depth ( o r l a y er).
ti
I f t h e d a t a o f two r a p i d l y succeeding surveys a r e a v a i l a b l e , uk, v '
k'
and hk as w e l l as t h e i r t i m e and space d e r i v a t i v e s can be c a l c u l a t e d
u s i n g t h e geostrophic r e l a t i o n s f o r t h e v e l o c i t i e s and t h e d e f i n i t i o n o f relative vorticity. S u b s t i t u t i n g (19) can be o b t a i n e d
i n t o (18),
the f o l l o w i n g system o f l i n e a r equations
461 5
Xi + Fk = 0,
2 Aki i=l
where t h e Xi's
k = l,N
a r e f u n c t i o n s o f t h e unknown reference l e v e l values
and where t h e Aki's
and F k ' s depend o n l y on t h e r e l a t i v e values o f t h e
v a r i a b l e s (which a r e known from t h e observations):
I n order t o solve
(ZO), one must t a k e N 2 5.
c l u d e t h e s u r f a c e and/or
There i s no need t o i n -
bottom l a y e r s among t h e l a y e r s s e l e c t e d f o r t h e
s o l u t i o n o f t h e system. I f t h e o b s e r v a t i o n a l d a t a are w i t h o u t e r r o r s and (18) holds e x a c t l y ,
and i f N > 5, o n l y 5 equations a r e l i n e a r l y independent and t h e remaining (N
-
5)
equations a r e l i n e a r combinations o f t h e former.
because o f e r r o r s and s m a l l - s c a l e noise, (20)
I n practice,
i s overdetermined f o r N > 5,
and t h e s o l u t i o n can be found by a l e a s t squares method, i . e . by m i n i m i z i n g t h e sum
R =
N
5
t ( 2 Aki Xi
k=l
i=l
+ Fk)
2
.
(23)
T h i s procedure i s f o l l o w e d a t every p o i n t x, y o f t h e d a t a g r i d . values o f
i,
and ag/ax,
&ay
The
are calculated separately despite the f a c t
Z9P
Fig.
12.
Estimated a b s o l u t e v e l o c i t i e s f o r t h e near-surface l a y e r ( l e f t )
and on t h e ut = 8.5 surface ( r i g h t ) f o r survey 18/1.
An arrow whose l e n g t h
equals t h e i n t e r p o l a t i o n s t e p corresponds t o a v e l o c i t y o f 10 cm/sec. t h a t t h e y a r e r e l a t e d through s p a t i a l d e r i v a t i v e s . enormously complicated
if
the horizontal
But t h e problem becomes
f i e l d s are g i v e n as numerical
t a b l e s and t h e equations solved f o r a l l p o i n t s simultaneously. For a t e s t o f t h e method, we chose t h e data o f surveys 1 8 / 1 and 18/2 f o r which t h e t i m e i n t e r v a l i s 9 days.
The pressure values as f u n c t i o n s o f
d e n s i t y were i n t e r p o l a t e d by optimal i n t e r p o l a t i o n t o a denser g r i d (spacing o f 0.25 at u n i t s ) and t h e values o f Aki
and Fk were c a l c u l a t e d .
The t i m e
d e r i v a t i v e s were c a l c u l a t e d by one-sided d i f f e r e n c e s and t h e space d e r i v a t i v e s by c e n t r a l d i f f e r e n c e s , t h e l a t t e r from t h e d a t a o f survey 18/1. The r e f e r e n c e l e v e l was chosen a t t h e surface, involved only intermediate layers w i t h
b u t t h e m i n i m i z a t i o n o f (23)
N = 8 t o 11.
The estimated a b s o l u t e v e l o c i t i e s a r e presented i n F i g u r e 12 f o r t h e s u r f a c e l a y e r and on t h e ut = 8.5 surface, which i s i n t h e middle o f t h e halocline.
The d i r e c t i o n s o f t h e v e l o c i t y v e c t o r s r e p l i c a t e t h e p a t t e r n o f
463 t h e RDT p e r t u r b a t i o n shown i n F i g u r e 6, c i e n t l y smooth.
However,
and the v e l o c i t y f i e l d i s s u f f i -
we t h i n k t h a t t h e magnitudes o f t h e reference
l e v e l (surface)
c u r r e n t s are underestimated,
should be weaker
or even reverse.
and t h a t t h e bottom c u r r e n t s
I n m i n i m i z i n g (23), t h e dominant t e r m s o f t h e system (20) were Ak4X4 and Ak5X5,
which represent t h e advection o f reference l e v e l v o r t i c i t y by t h e
r e l a t i v e velocity. a r e one order
The o t h e r terms o f (20),
o f magnitude s m a l l e r .
a f t e r l e a s t squares f i t t i n g ,
The same q u a l i t a t i v e
r e s u l t s were
o b t a i n e d by Korotayev and Shapiro (1978), b u t they estimated t h e absolute v e l o c i t y a t one l o c a t i o n only.
Our l a r g e r h o r i z o n t a l data s e t allows us t o
compare "independently" estimated values,. o f
The c o r r e l a t i o n between these values i s bad, v o r t i c i t y g r a d i e n t s being s y s t e m a t i c a l l y higher.
Hence,
we
are unable t o estimate t h e balance o f
terms i n t h e v o r t i c i t y c o n s e r v a t i o n equation and t o determine which t e r m s are t h e most i m p o r t a n t c o n t r i b u t o r s t o t h e dynamics o f synoptic s c a l e processes. Nevertheless, we t h i n k t h a t our attempt t o estimate absolute v e l o c i t i e s f o r s y n o p t i c s c a l e processes was p a r t i a l l y successful and t h a t t h e s h o r t comings a r e due t o t h e q u a l i t y o f t h e d a t a r a t h e r than t o t h e method.
The
data were n o t c o l l e c t e d w i t h t h e d i r e c t purpose o f e s t i m a t i n g t h e absolute v e l o c i t y , and t h e temporal and s p a t i a l r e s o l u t i o n s were probably n o t optimal f o r t h e c a l c u l a t i o n o f t h e high-order d e r i v a t i v e s which are necessary f o r t h e method. DISCUSSION AND CONCLUSIONS
First,
l e t us summarize t h e p u r e l y experimental r e s u l t s obtained from
t h e CTD surveys:
1)
t h a t t h e s t r a t i f i c a t i o n o f t h e B a l t i c Proper i s
It i s evident
d i s t u r b e d by low-frequency motions.
Such motions can be d i s t i n c t l y sepa-
r a t e d from s h o r t - t e r m v a r i a t i o n s ( w i t h p e r i o d s s h o r t e r than one day),
es-
p e c i a l l y i n the halocline.
2)
The most common s p a t i a l s t r u c t u r e o f t h e s y n o p t i c scale perturba-
t i o n s c o n s i s t s o f "mountains" and " v a l l e y s " o f isopycnal surfaces.
For many
p e r t u r b a t i o n s t h e geostrophic streamlines o f r e l a t i v e v e l o c i t y are closed, being nearly c i r c u l a r .
For t h a t reason we can consider them t o be eddies.
I n t h e most d i s t i n c t i v e eddies, perturbation.
t h e isopycnals r i s e i n t h e center o f t h e
464
3)
The t y p i c a l h o r i z o n t a l dimensions o f t h e eddies a r e o f t h e o r d e r
o f 2 t o 6 Rd (Rd E 1 0 km). the vertical.
4)
The eddy a x i s can be i n c l i n e d w i t h r e s p e c t t o
,
The usual d i r e c t i o n o f m i g r a t i o n o f t h e eddies i s along t h e aver-
aged isobaths w i t h shallower water on t h e r i g h t .
The t y p i c a l m i g r a t i o n
speed i s a few cm/sec. 5)
The v e r t i c a l s y n o p t i c s c a l e displacements o f t h e isopycnals can be
more than 20 m.
The r e l a t i v e c u r r e n t s i n t h e eddies can exceed 10 t o 1 5
cm/sec.
6)
The t y p i c a l l i f e t i m e o f t h e eddies i s more t h a n 10 days.
The
i n t e n s i f i c a t i o n o f an eddy was documented, as was t h e s p l i t t i n g o f a l a r g e and i n t e n s i v e eddy i n t o two s m a l l e r ones.
7)
In
The l a r g e and i n t e n s i v e eddies r e v e a l s i g n i f i c a n t t h e r m o c l i n i c i t y .
t h e i n t e r m e d i a t e l a y e r between the thermocl ine and t h e h a l o c l ine,
the
temperature d i s t r i b u t i o n on a f i x e d d e n s i t y s u r f a c e can have v a r i a t i o n s o f up t o 4 O C .
8)
The eddies and o t h e r s y n o p t i c s c a l e p e r t u r b a t i o n s t e n d t o have
l a r g e r dimensions along t h e averaged isobaths than along t h e bottom slope. The s t r e a m l i n e s o f r e l a t i v e c u r r e n t s can i n t e r s e c t t h e bottom contours where t h e depth decreases.
From the section e n t i t l e d "theoretical interpretation",
the following
p o i n t s can be made:
1)
The speed and t h e d i r e c t i o n o f m i g r a t i o n o f t h e eddies can be
e x p l a i n e d i n terms o f topographic waves.
Also,
t h e v e r t i c a l shears o f t h e
h o r i z o n t a l c u r r e n t s i n t h e thermocline and i n t h e h a l o c l i n e may correspond to
those
o f topographic waves.
The magnitude o f
the current
shear
is
g r e a t e r i n t h e h a l o c l i n e t h a n i n t h e thermocline, f o r topographic waves, and t h e shear has t h e same s i g n i n b o t h l a y e r s .
2)
I n t h e simple model o f b a r o c l i n i c i n s t a b i l i t y , t h e wavelengths o f
t h e most u n s t a b l e waves agree w e l l w i t h t h e dimensions o f t h e l a r g e r eddies.
A v e r t i c a l shear o f t h e mean f l o w o f t h e order o f a few cm/sec can produce reasonable growth r a t e s f o r unstable waves. t h a t t h e observed eddies can be generated
T h i s leads us t o t h e hypothesis by b a r o c l i n i c
instability o f
sheared mean flows. Comparing our r e s u l t s t o those o b t a i n d f o r t h e ocean, we note t h a t t h e nondimensional diameters o f t h e eddies ( w i t h Rd as t h e s c a l e u n i t ) a r e t h e same i n t h e B a l t i c and i n t h e ocean. a reduced model o f t h e ocean.
The B a l t i c Sea, however, i s n o t simply
The m i g r a t i o n and t h e e v o l u t i o n o f t h e eddies
a r e c o n t r o l l e d by t h e bottom topography r a t h e r t h a n by t h e p l a n e t a r y effect.
From a t h e o r e t i c a l p o i n t o f view,
p-
i t i s only f o r the barotropic
465
case t h a t t h e p - e f f e c t ( i n t h e ocean) can be simply replaced by the i n f l u ence o f t h e bottom slope ( i n t h e B a l t i c ) .
I n t h e s t r a t i f i e d water o f t h e
B a l t i c , t h e e f f e c t o f bottom topography completely dominates t h a t o f beta, and many o f t h e oceanic t h e o r e t i c a l r e s u l t s cannot be d i r e c t l y a p p l i e d t o t h e B a l t i c case.
The o t h e r c o m p l i c a t i o n i s t h a t , in,,contrast t o t h e r e g u l a r
v a r i a t i o n o f t h e C o r i o l i s parameter, t h e bottom topography i s very i r r e g u lar,
and t h e assumption o f a constant slope i s o n l y v a l i d i n a few cases.
Disturbances o f t h e bottom topography on a scale comparable t o t h a t o f t h e eddies can a l s o be important. The
limitations
of
the
experiments
d i d not allow t o
"oceanic" q u e s t i o n o f whether t h e eddies ,,are "closed-packed" Monin, 1978) o r s i n g u l a r (Nelepo and Korotayev, 1979).
answer
the
(Koshlyakov and
I n t h e l a t t e r paper,
t h e authors a s s e r t t h a t eddies are s i n g u l a r n o n l i n e a r phenomena, between which e x i s t s a background o f Rossby waves.
They show t h e o r e t i c a l l y t h a t t h e
n o n l i n e a r eddies m i g r a t e westwards l i k e Rossby waves. Woods (1980) d i s t i n g u i s h e s between wavelike motions t h a t r a d i a t e energy and momentum, and a d v e c t i v e - l i k e motions (eddies and f r o n t s ) t h a t t r a n s p o r t momentum and energy by advection o f water p a r t i c l e s .
A t t h e present time,
we a r e n o t a b l e t o c l a s s i f y t h e observed eddies ( d e f i n e d otherwise l i k e Woods) i n those terms. The c u r r e n t s i n t h e B a l t i c Sea are considered t o be m o s t l y wind-induced (Jansson, 1978).
With t h e h e l p o f a l i n e a r numerical model, Kielmann (1978)
shows t h a t f l u c t u a t i n g winds can generate topographic eddies.
The computa-
t i o n s o f Simons (1978), based on a n o n l i n e a r model, i n d i c a t e t h a t t h e eddies a r e n o t r e l a t e d i n a s t r a i g h t f o r w a r d manner t o t h e wind f o r c i n g .
Our obser-
v a t i o n s i n d i c a t e t h a t t h e storm which occurred between surveys 18/1 and 18/2 had no obvious i n f l u e n c e on t h e RDT p a t t e r n s . Numerous i n t e r e s t i n g phenomena were observed, not e n t i r e l y clear.
t h e nature o f which i s
From our p o i n t o f view, cooperative experiments such as
BOSEX i n 1977 should be u s e f u l t o complement t h e knowledge o f t h e dynamics
o f t h e B a l t i c Sea.
REFERENCES Aitsam, A. and Elken, J., 1980.
Results o f CTD surveys i n t h e BOSEX area o f
t h e B a l t i c Sea ( i n Russian).
In:
T o n k a y a ' s t r u k t u r a i sinopticheskaya
izmenchivost morei, T a l l i n n , pp. 19-23. Aitsam,
A.,
Elken.
J., Pavelson, J. and Talpsepp, L., 1981.
Preliminary
r e s u l t s o f the investigation o f spatial-temporal characteristics o f the B a l t i c Sea s y n o p t i c v a r i a b i l i t y .
In:
The I n v e s t i g a t i o n and M o d e l l i n g
o f Processes i n t h e B a l t i c Sea, P a r t I,pp. 70-98.
466
Aitsam,
A.,
and Talpsepp,
synoptic
scale
Russian).
In:
L.,
1980.
currents
in
Investigation o f the v a r i a b i l i t y o f
the
Central
Baltic
in
1977-1980
(in
Tonkaya s t r u k t u r a i sinopticheskaya izmenchivost morei,
T a l l i n n , pp. 14-18. Davis, R.E.
B r e t h e r t o n , F.P.,
and Fandry, C.B.,
A technique f o r ob-
1976.
j e c t i v e a n a l y s i s and design o f oceanographic experiments a p p l i e d t o
MODE-73. Eady, E . T . , Fomin, L.M.,
23:
Deep-sea Research,
1949.
559-582.
Long waves and cyclone waves.
1964.
Tellus,
The dynamic method i n oceanography.
3:
33-52.
Elsevier Scientific
P u b l i s h i n g Company, 212 pp. Gandin,
1965.
L.S.,
Objective analysis o f meteorological f i e l d s .
'Israel
Program f o r S c i e n t i f i c T r a n s l a t i o n s , Jerusalem. Jansson, 6.-O., sea.
1978.
In:
-
The B a l t i c
a system a n a l y s i s o f a semi-enclosed
Advances i n Oceanography, Plenum P u b l i s h i n g Corporation, pp.
131-183. Keunecke,
and Magaard,
K.-H.,
L.,
1974.
Measurements by means o f towed
t h e r m i s t o r cables and problems o f t h e i r i n t e r p r e t a t i o n w i t h r e s p e c t t o mesoscale processes.
6:
Liege,
Memoires de l a Societe Royale des Sciences de
147-160.
Kielmann, J., 1978.
Mesoscale eddies i n t h e B a l t i c .
Proc. o f t h e X I
In:
Conference o f B a l t i c Oceanographers, Rostock, pp. 729-755. H o l t r o f f , J. and Reimer, U.,
Kielmann, J.,
B e r . I n s t . Meeresk. K i e l , Kielmann, J., Krauss, W.
26:
1976.
Data r e p o r t B a l t i c '75.
23.
and Keunecke, K.-H.,
1973.
Currents and s t r a t i f i -
c a t i o n i n t h e B e l t Sea and Arcona Basin d u r i n g 1962-1968. Meeresforschungen, Korotayev,
G.K.
Kieler
2: 90-111.
and Shapiro,
N.B.,
1978.
On t h e c a l c u l a t i o n o f absolute
v e l o c i t y o f geostrophic c u r r e n t s from t h e data o f s y n o p t i c surveys ( i n Russian).
In:
Eksperimentalnye
gramme "POLYMODE", Sevastopol Koshlayakov, M.N.,
Galerkin, L.I.
issledovaniya
PO
mezhdunarodnoi p r o -
, pp. 83-95. and Truong D i n Hien, 1970.
s t r u c t u r e o f t h e open ocean geostrophic c u r r e n t s .
On t h e meso-
Okeanologiya, & I :
805-814. Koshlayakov, M.N. physical
and Grachev, Y.M.,
1973.
polygon i n t h e T r o p i c a l
Mesoscale c u r r e n t s a t a hydro-
Atlantic.
Deep-sea
Research,
0:
507-526. Koshlayakov,
M.N.
and Monin,
A.S.,
Ann. Rev. E a r t h Planet. S c i . ,
6:
1978. 495-523.
Synoptic eddies i n t h e ocean.
467
Laanemets,
J.
and L i l o v e r ,
M.-J.,
1981.
The data processing scheme o f
measurements w i t h t h e N e i l Brown Mark 111 CTD. and M o d e l l i n g o f
Processes i n t h e B a l t i c Sea,
In:
The I n v e s t i g a t i o n
P a r t I, T a l l i n n ,
pp.
10-19. McWill iams, J. C. , 1976.
Maps f r o m t h e Mid-Ocean Dynamics Experiment: P a r t
I, Geostrophic Streamfunction. and F l i e r l , G.R.,
McWilliams, J.C.
1976.
analyses o f MODE a r r a y data. The MODE Group,
1978.
3.
Phys.
Oceanogr.
5(6):
810-827.
Optimal, quasi-geostrophic waves
Deep-sea Research,
23:
285-300.
The Mid-Ocean Dynamics Experiment.
Deep Sea Re-
2: 859-910.
search, Nelepo, B . A .
and Korotayev, G . K . ,
1979. ,,,The s t r u c t u r e o f s y n o p t i c a l v a r i -
a b i l i t y from t h e d a t a on h y d r o l o g i c a l surveys i n t h e POLYMODE observational
area ( i n Russian).
Morskie g i d r o f i z i c h e s k i e issledovanya,
3:
3-20. Nikitin,
O.P.
K.G.,
and Vinogradova,
1980.
Separation o f t h e synoptic
component o f temperature f i e l d from XBT-survey data and some appl i c a tions.
Ocean M o d e l l i n g (unpublished manuscript).
Rhines, P.,
1970.
fied fluid. Rhines, P . ,
Edge-, bottom-,
1977.
Interscience, Schott,
6:
T. J . ,
1978.
3:
Sustavov, J.V.,
In:
The Sea, Wiley-
189-318.
F. and Stommel, H., 1978.
Tellus,
1: 273-302.
The dynamics o f unsteady c u r r e n t s .
d i f f e r e n t oceans. Simons,
and Rossby waves i n a r o t a t i n g , s t r a t i -
Geophysical F l u i d Dynamics,
Beta s p i r a l s and absolute v e l o c i t i e s i n
Deep-sea Research, Wind-driven
2: 961-1010.
c i r c u l a t i o n s i n t h e southwest B a l t i c .
272-283.
E.S.
Chernyshova,
and Michaylov, A . E . ,
t i c eddy genesis i n t h e B a l t i c Sea.
In:
1978.
On t h e synop-
Proc. o f t h e X I Conference o f
B a l t i c Oceanographers, Rostock, pp. 795-805. 1975.
Tang, C.M.,
B a r o c l i n i c i n s t a b i l i t y o f s t r a t i f i e d shear flows i n t h e
ocean and atmosphere. Woods, J.D.,
1979.
J. Geophys. Res.,
80: 1168-1175.
M o d e l l i n g oceanic t r a n s p o r t i n s t u d i e s o f c l i m a t e r e -
sponse t o p o l l u t i o n .
In:
Man's Impact on Climate, E l s e v i e r S c i e n t i f i c
P u b l i s h i n g Company, pp. 99-107. Woods, J.D., ture, Woods, J.D.
1980.
288:
Do waves l i m i t t u r b u l e n t d i f f u s i o n i n t h e ocean?
and M i n n e t t , P.J.,
1979.
Analysis o f mesoscale t h e r m o c l i n i c i t y
w i t h an example from t h e t r o p i c a l thermocline d u r i n g GATE. Research,
Na-
219-224.
3: 85-96.
Deep-sea