The Variability of the Temperature, Salinity and Density Fields in the Upper Layers of the Baltic Sea

The Variability of the Temperature, Salinity and Density Fields in the Upper Layers of the Baltic Sea

489 THE VARIABILITY OF THE TEMPERATURE, S A L I N I T Y AND DENSITY FIELDS I N THE UPPER LAYERS OF THE BALTIC SEA A. Aitsam, J. Pavelson .' I n s ...

580KB Sizes 3 Downloads 18 Views

489

THE VARIABILITY OF THE TEMPERATURE, S A L I N I T Y AND DENSITY FIELDS I N THE UPPER LAYERS OF THE BALTIC SEA A. Aitsam,

J. Pavelson

.'

I n s t i t u t e o f Thermophysics and E l e c t r o p h y s i c s , Academy o f Sciences o f t h e Estonian S.S.R. INTRODUCTION I n r e c e n t years, t h e use o f a towed CTD has proved successful i n d e t e r mining t h e s t r u c t u r e o f t h e temperature;' s a l i n i t y and d e n s i t y f i e l d s .

The

s p a t i a l d i s t r i b u t i o n s o f f i e l d s obtained by t h i s method i n a comparatively s h o r t t i m e have an e s s e n t i a l l y h i g h e r r e s o l u t i o n than those obtained from observations a t d i s c r e t e p o i n t s .

Depending on t h e aims o f t h e i n v e s t i g a -

t i o n , t h r e e towing regimes a r e p o s s i b l e : 1. 2.

t h e CTD moves a t a f i x e d depth (Gargett, 1978), t h e CTO performs wavelike motion between two l e v e l s ( A l l e n e t a l . 1980),

3.

t h e CTD moves a l o n g a f i x e d isotherm o r isopycnal (Katz,

1973,

1975). I n most o f t h e s t u d i e s j u s t mentioned,

t h e s p a t i a l s t r u c t u r e o f the

temperature and s a l i n i t y f i e l d s was obtained w i t h o u t s e p a r a t i n g t h e "background" o f i n t e r n a l waves.

However, when s t u d y i n g t h e v a r i a b i l i t y o f these

v a r i a b l e s , t h e r e l a t i v e p a r t due t o i n t e r n a l waves should be determined. This i s i m p o r t a n t f o r a c o r r e c t e v a l u a t i o n o f t h e c h a r a c t e r i s t i c s o f t h e non-wave

perturbations.

As a f i r s t approximation,

an isopycnal a n a l y s i s

m i g h t be used as i n r e c e n t s t u d i e s by Woods and M i n n e t t (1979), and Cairns (1980).

Despite i t s shortcomings,

t h i s method i s t h e b e s t one a t present.

The aim of t h e p r e s e n t study i s t o determine t h e main c h a r a c t e r i s t i c s o f t h e temperature, s a l i n i t y and d e n s i t y f i e l d s on h o r i z o n t a l scales l a r g e r than 1 km i n t h e upper l a y e r s o f t h e open p a r t o f t h e B a l t i c Sea.

F i r s t , we

s h a l l describe t h e experiments and t h e processing o f t h e data.

Then, the

most t y p i c a l r e s u l t s w i l l be presented and discussed.

F i n a l l y , some hypothe-

ses about t h e o r i g i n o f t h e observed s t r u c t u r e w i l l be formulated.

EXPERIMENTS AND DATA PROCESSING

All

the

experimental

data were obtained u s i n g t h e towed measuring

device c o n s t r u c t e d a t t h e I n s t i t u t e o f Thermophysics and E l e c t r o p h y s i c s o f t h e Academy o f Sciences o f t h e Estonian S.S.R. 1981).

(Pavelson and Portsmuth,

The i n s t r u m e n t c o n s i s t s o f an underwater u n i t , t h e "FISH",

onboard system ( F i g u r e 1).

The " F I S H "

and an

i s equipped w i t h a CTD MARK I11

490

2

MINI -

INTERFACE

z

PL 0 T TER .''

. COMPUTER H P 9825A

HP 9862A

i

r - - ---

-- 1

I

I

CABLE

%

CT D

b

DECK UNIT

TAPE RECORDER KENNEDY 9832

1

U N D E R WATER UNIT

'FISH'

F i g u r e 1.

Block diagram o f t h e towed measuring device.

( N B I S ) and guided by means o f small wings a c t i v a t e d by a m i n i a t u r e e l e c t r i c motor.

The data are t r a n s m i t t e d t o t h e onboard t e r m i n a l and s t o r e d on a

tape r e c o r d e r KENNEDY-9832 w i t h t h e h e l p o f s p e c i a l i n t e r f a c e s . o f t h e "FISH"

The c o n t r o l

motion and t h e p r e l i m i n a r y p l o t t i n g o f temperature s e c t i o n s

a r e performed by an HP-9825-A computer. For t h e experiments r e p o r t e d i n t h i s paper, t h e computer was programmed t o give the "FISH"

a wavelike motion.

The t o w i n g speed was between 5 and 7

knots, t h e CTD was lowered t o a depth o f 40 m, and t h e l e n g t h o f t h e h o r i z o n t a l c y c l e v a r i e d from 370 t o 500 m. hertz,

the v e r t i c a l

Using a measuring frequency o f 30

r e s o l u t i o n was b e t t e r than 5 cm,

since the v e r t i c a l

v e l o c i t y d i d n o t exceed 1.5 m s-I. Experiments u s i n g t h e towed CTD were performed d u r i n g t h e 9 t h and 1 5 t h c r u i s e s o f t h e R/V "Ayu-Dag" Sea.

i n t h e c e n t r a l and southern p a r t s o f t h e B a l t i c

The l o c a t i o n s o f t h e CTD s e c t i o n s a r e shown i n F i g u r e 2.

9 t h c r u i s e (1978),

t i o n s 1, 2 and 3; t h e l e n g t h s o f these s e c t i o n s were 90, respectively.

During t h e

we worked i n t h e extended BOSEX area and o b t a i n e d sec-

D u r i n g t h e 1 5 t h c r u i s e (1979),

85 and 120 km

measurements were made along

s e c t i o n 4 (200 km), extending from t h e BOSEX area t o t h e I s l a n d o f Bornholm. Hydrometeorological c o n d i t i o n s d u r i n g these two c r u i s e s were various.

The

measurements o f t h e 9 t h c r u i s e t o o k p l a c e a t t h e beginning o f August, i . e . ,

491 a t a t i m e o f weak winds and s t r o n g thermal s t r a t i f i c a t i o n .

During t h e 1 5 t h

c r u i s e ( a t t h e end o f September), s t r o n g v a r i a b l e winds and a negative heat f l u x p r e v a i l e d and combined t o d e s t r o y t h e s t r a t i f i c a t i o n o f t h e upper l a y ers.

F i g u r e 2.

Locations o f t h e "FISH" tow sections.

A c h a r a c t e r i s t i c f e a t u r e o f measurements made w i t h a towed h i g h f r e quency device, when s t u d y i n g s y n o p t i c scale phenomena, i s t h e accumulation For example, some o f o u r s e r i e s have up

o f a g r e a t amount o f i n f o r m a t i o n .

6 t o 16 x 10 data p o i n t s . i n essential

losses

It i s e v i d e n t t h a t subsampling t h e s e r i e s r e s u l t s

i n the determination o f isolines.

method i s n o t used here.

this

The d a t a processing c y c l e includes a p r e l i m i n a r y

and t h e d e t e r m i n a t i o n o f c h a r a c t e r i s t i c p e r t u r b a t i o n s o f t h e

processing

temperature and s a l i n i t y f i e l d s .

First,

syncroerrors a r e e l i m i n a t e d from

t h e CTD data; t h e r e a r e about 300 syncroerrors p e r hour. i n c o r r e c t values o f pressure P,

A t t h e same stage,

temperature T and c o n d u c t i v i t y C a r e r e Those Pi,

moved, u s i n g t h e f o l l o w i n g c r i t e r i a :

Ti and Ci which do n o t meet

the conditions

-

Pi-l < 1 dbar, a r e considered i n c o r r e c t . Pi

Therefore,

Ti

-

Ti-l

< l0C,

Ci

-

Ci-l

-1 < 1 mmho cm

I n t h e second step, a l l t h e s e r i e s a r e smoothed, t o lessen t h e i n f l u ence o f t h e v e r t i c a l m i c r o s t r u c t u r e and t h e noise l e v e l .

Taking a running

average o f t h e d a t a w i t h a 1 m f i l t e r appears t o be t h e b e s t way t o e l i m i nate t h e m i c r o s t r u c t u r e , a l t h o u g h i t r e s u l t s i n a c e r t a i n deformztion o f t h e s y n o p t i c s c a l e thermohaline s t r u c t u r e .

From t h e smoothed s e r i e s , s a l i n i t y

492

and s p e c i f i c d e n s i t y ,

at,

are c a l c u l a t e d based on known formulae f o r t h e

B a l t i c Sea ( P e r k i n and Walker, 1971; M i l l e r o and Kremling, 1976). I n t h e f i n a l step, a l l p o s s i b l e s p a t i a l i s o l i n e s a r e determined.

Time

i s o l i n e s are transformed i n t o s p a t i a l i s o l i n e s w i t h t h e h e l p o f t h e c o r r e s ponding n a v i g a t i o n data.

This i s f o l l o w e d by t h e p l o t t i n g o f s e c t i o n s o f

t h e T, S , and ut f i e l d s i n space P ; f i n a l l y , s e c t i o n s o f t h e T and S f i e l d s a r e p l o t t e d i n space at, i n t e r n a l waves.

i n o r d e r t o e l i m i n a t e t h e kinematic e f f e c t o f

The comparison o f the s e c t i o n s o f b o t h types a l l o w s us t o

d i v i d e t h e f i e l d s i n t o components, t o separate t h e v a r i o u s p e r t u r b a t i o n s and t o evaluate t h e i r c h a r a c t e r i s t i c s .

ERRORS The e s t i m a t i o n o f e r r o r s interpretation. 1.

i s a l s o i m p o r t a n t i n d a t a processing and

The main sources o f e r r o r s are:

t h e thermal i n e r t i a o f t h e pressure sensor, p a r t i c u l a r l y i n case

o f h i g h temperature g r a d i e n t s ;

2. lated;

3.

t h e accuracy w i t h which P,T,C

a r e measured, and S and ut calcu-

t h e use o f T and ut i n s t e a d o f t h e p o t e n t i a l temperature, 8 , and

t h e p o t e n t i a l d e n s i t y ue. The a n a l y s i s o f our c a l c u l a t i o n s leads t o t h e f o l l o w i n g conclusion. When t h e s t r a t i f i c a t i o n i s s t r o n g (e.g.

summer o f 1978), t h e r e c o r d i n g o f a

change i n t h e v e r t i c a l d i r e c t i o n o f t h e CTD motion i s s i g n i f i c a n t l y delayed due t o t h e thermal i n e r t i a o f t h e pressure sensor.

T h i s causes apparent

s h i f t s i n t h e depths o f t h e v a r i o u s i s o l i n e s w i t h i n t h e f o l l o w i n g ranges: up t o 1, 5 and 2 m f o r isotherms, i s o h a l i n e s and isopycnals, r e s p e c t i v e l y . Therefore, we chose t o use o n l y CTD d a t a c o l l e c t e d d u r i n g t h e upward motion o f t h e FISH.

I n doing so,

t h e h o r i z o n t a l r e s o l u t i o n i s decreased by a

f a c t o r two b u t t h i s i s n o t c r i t i c a l i n view o f t h e scales o f t h e phenomena under study. The second source o f e r r o r s i s t h e absolute accuracy o f t h e i n s t r u ments.

I n view o f t h e l o n g term s t a b i l i t y o f t h e p r o b e ' s o p e r a t i o n and

p a r t i a l c a l i b r a t i o n , AT = k 0.005°C,

AC =

*

0.005 mmho cm-'

and AP = k 3 m

may be taken as e r r o r bounds.

The l a t t e r r e f l e c t s mainly t h e thermal i n e r -

t i a o f t h e pressure sensor.

Since we a r e mainly i n t e r e s t e d i n r e l a t i v e

i s o l i n e changes and d a t a a r e c o l l e c t e d . i n one v e r t i c a l d i r e c t i o n o n l y , t h e pressure e r r o r may be considered systematic.

Based on t h e formulae used i n

t h e c a l c u l a t i o n s , i t can be determined t h a t AS = t 0.010 O/oo and Ao,

= t

0.0085 ut u n i t s . Finally,

l e t us consider t h e problem o f t h e deformation o f t h e i s o -

l i n e s , which i s r e l a t e d t o t h e nonconservative nature o f t h e temperature and

493

density.

under t h e i n f l u e n c e o f

Indeed,

p a r c e l moves up and down. same water

parcel

Cairns (1980),

i n t e r n a l waves,

a given water

A t c e r t a i n depths, because o f compression, t h e

has d i f f e r e n t temperature and d e n s i t y .

According t o

t h e use o f d e n s i t y i n s t e a d o f p o t e n t i a l d e n s i t y leads t o the

f o l l o w i n g e r r o r s i n temperature and s a l i n i t y : AT = AS =

where

ds(K/g)t dz

= c o e f f i c i e n t o f a d i a b a t i c compredsion,

K

5=

displacement o f water p a r c e l due t o i n t e r n a l waves.

I t can be seen t h a t t h e s m a l l e r t h e v e r t i c a l d e n s i t y g r a d i e n t and t h e l a r g e r

t h e amplitude o f t h e i n t e r n a l waves, the g r e a t e r are t h e e r r o r s i n t h e i s o pycnal a n a l y s i s .

Taking values t y p i c a l o f t h e upper l a y e r o f t h e B a l t i c Sea

= 10-1 O C m-', dS/dz = 5 x O/oo m-', and u n i t s m - l ) and f o r t h e amplitude o f t h e i n t e r n a l waves,

f o r t h e g r a d i e n t s (dT/dz dut/dz

u 2 x lo-'

= 2 x lo-'

we g e t AT

-1

and AS -1

OC

O/oo.

We s h a l l add t h e e r r o r s made i n

t h e d e t e r m i n a t i o n o f isotherms and isopycnals i n space P w i t h o u t c o n s i d e r i n g c o m p r e s s i b i l i t y AT

=

2 x

OC

and Aut E 5 x

ut u n i t s .

a r e s m a l l e r than t h e corresponding absolute accuracies.

The l a t t e r

Consequently, i t i s

necessary t o use t h e p o t e n t i a l temperature and d e n s i t y i n isopycnal a n a l y s i s o n l y i n t h e presence o f extremely small d e n s i t y gradients. RESULTS I n t h i s s e c t i o n , we p r e s e n t and discuss t h e r e s u l t s o b t a i n e d along t h e s e c t i o n s described e a r l i e r . experiments i s s t r i k i n g .

The d i f f e r e n c e between t h e 1978 and t h e 1979

During t h e summer experiment (1978), t h e s t r u c t u r e

o f t h e i s o l i n e s o f t h e temperature and s a l i n i t y f i e l d s i s r a t h e r smooth.

In

t h e thermocline r e g i o n , l o n g w a v e l i k e p e r t u r b a t i o n s w i t h l e n g t h s o f 30-40 km and amplitudes o f up t o 3 m can be d i s t i n g u i s h e d .

The r e s u l t s o f t h e sec-

t i o n made along t h e a x i s o f t h e B a l t i c Sea i n autumn (1979) are q u i t e d i f f e r e n t i n character.

We f i n d l a r g e f l u c t u a t i o n s (up t o 10 m) o f t h e i s o -

l i n e s a t a l l depths where measurements were made. p e r t u r b a t i o n s i s 20-25 km, i . e .

The l e n g t h scale o f these

s m a l l e r than i n summer.

Wavelike perturba-

t i o n s o f small scales were n o t studied, s i n c e they are d i s t o r t e d because o f t h e Doppler e f f e c t d u r i n g f i e l d measurements.

T y p i c a l examples o f s e c t i o n s

o b t a i n e d d u r i n g these experiments a r e presented i n Figures 3 and 4.

494

Distance ( km 1

F i g u r e 3.

Temperature,

(summer 1978). density:

from tow s e c t i o n 1

temperature: l0C; s a l i n i t y : 0.05 O/oo;

0.2 at u n i t s .

F i g u r e 4 ( f a c i n g page). s e c t i o n 4 (autumn 1979).

0.05 O/oo;

s a l i n i t y and d e n s i t y f i e l d s

Contour i n t e r v a l s :

density:

Temperature, s a l i n i t y and d e n s i t y f i e l d s f r o m tow Contour i n t e r v a l s :

0 . 1 at u n i t s .

temperature:

l0C; s a l i n i t y :

495

I

10

I

Distance I k m ) 20 30 40 50 Isotherms

I

I

I

1

Isdhalines

I

I s 0pycnals

496

On t h e b a s i s o f temperature s e c t i o n s , i t i s p r a c t i c a l l y impossible t o i d e n t i f y p e r t u r b a t i o n s o f non-wave salinity field, only.

Therefore,

method,

origin.

However,

on s e c t i o n s o f t h e

such p e r t u r b a t i o n s can be d i s t i n g u i s h e d , b u t q u a l i t a t i v e l y

however,

we

shall

use t h e isopycnal

has a grave shortcoming.

analysis

hereafter.

This

I f non-wave p e r t u r b a t i o n s o f

temperature and s a l i n i t y do n o t f u l l y compensate each o t h e r , d e n s i t y sect i o n s w i l l n o t r e f l e c t a " p u r e l y " wavelike p i c t u r e .

When t h i s i s t h e case,

t h e study o f t h e temperature and s a l i n i t y f i e l d s i n at-space

may n o t y i e l d

r e l i a b l e estimates o f t h e dimensions and amplitudes o f t h e p e r t u r b a t i o n s . As a f i r s t approximation,

l e t us assume t h a t t h e observed p e r t u r b a t i o n s

o f temperature and s a l i n i t y a r e d e n s i t y compensated.

Then, we may i d e n t i f y

p e r t u r b a t i o n s w i t h t h e f o l l o w i n g s t a t i s t i c s f o r t h e 1978 summer experiment (Table 1). Table 1 C h a r a c t e r i s t i c s o f t h e temperature f i e l d p e r t u r b a t i o n s , summer 1978

Maximum length (h)

Mean distance (km)

8

10

19

28

0.6

13

4

8

21

0.8

No.

Upper l a y e r (16°C) Intermediate l a y e r (4°C)

Mean temperature change ("C)

Mean length (h)

The f o l l o w i n g conclusions can be drawn from these r e s u l t s . and l o n g p e r t u r b a t i o n s dominate i n t h e upper l a y e r .

Relatively rare

I n the intermediate

l a y e r , below t h e thermocline, t h e r e are more p e r t u r b a t i o n s , b u t t h e i r dimensions a r e c o n s i d e r a b l y smaller.

Note t h a t t h e mean temperature change i s

l a r g e r i n t h e i n t e r m e d i a t e l a y e r t h a n i n t h e upper l a y e r . We were unable t o c a l c u l a t e analogous s t a t i s t i c s f o r t h e 1979 autumn experiment because t h e isotherms v a r i e d g r e a t l y ( t h e thermocline i s a t t h e bottom o f t h e l a y e r under study over p a r t o f t h e s e c t i o n ) .

I n spite o f

t h a t , temperature p e r t u r b a t i o n s w i t h l e n g t h scales o f 4 t o 12 km and average amplitudes o f

l0C

may be i d e n t i f i e d a g a i n s t a background o f s m a l l - s c a l e

"noise" ( p e r t u r b a t i o n s s h o r t e r t h a n 4 km w i t h amplitudes o f 0.3"C).

A considerable non-wave v a r i a b i l i t y o f s a l i n i t y i s observed m a i n l y i n t h e upper l a y e r . temperature.

I n most cases, t h e p e r t u r b a t i o n s a r e s i m i l a r t o those o f

For example i n F i g u r e 3, we see a s a l i n i t y p e r t u r b a t i o n which

i s about 18 km long.

There i s a sharp s a l i n i t y g r a d i e n t on b o t h s i d e s o f

491

t h e p e r t u r b a t i o n . A s i m i l a r perturbation can a l s o be seen in t h e temperat u r e f i e l d i n ot-space (Fig. 5), i . e . a f t e r removal of t h e v a r i a b i l i t y due t o i n t e r n a l waves.

0

4.0

1

5

10

Distance [ k m ) 15

120-

+

20

25

Figure 5. Temperature and s a l i n i t y f i e l d s in at-space ( f i r s t half o f the s e c t i o n presented i n Fig. 3 ) .

498

Thus,

i n t h e p r e s e n t case, t h e temperature and t h e s a l i n i t y o f t h e

water mass a r e d i f f e r e n t

f r o m those o f t h e neighboring environment.

To

study t h e d e n s i t y c h a r a c t e r i s t i c s o f these water masses, we s h a l l use t h e T-S p r e s e n t a t i o n (Gargett, 1978).

The essence o f t h e method i s as f o l l o w s .

Moving a t a f i x e d depth w i t h i n t h e core of a g i v e n water mass corresponds t o moving up and down on a T-S curve on account o f i n t e r n a l waves.

Crossing

t h e border1 i n e between t w o d i f f e r e n t water masses corresponds t o s w i t c h i n g I f t h e t r a n s l a t i o n from one T-S

t o another T-S curve.

takes p l a c e along an isopycnal,

curve t o another

we may consider t h a t t h e temperature and

s a l i n i t y p e r t u r b a t i o n s a r e d e n s i t y compensated. p l a c e a t an angle t o t h e isopycnals,

I f t h e t r a n s l a t i o n takes

we may draw t h e c o n c l u s i o n t h a t t h e F i g u r e 7 shows t h e T-S p l o t

p e r t u r b a t i o n s are n o t compensated by d e n s i t y .

a t a depth o f 10 m f o r t h e example j u s t discussed.

Despite a considerable

sparseness o f t h e data p o i n t s i n t h e f i r s t h a l f o f t h e p e r t u r b a t i o n , t w o types o f t r a n s l a t i o n s o r "crossings" may be d i s t i n g u i s h e d .

I n the left-hand

p a r t o f t h e p e r t u r b a t i o n , t h e passage over t h e 4 km s u b p e r t u r b a t i o n i s n o t isopycnal ( d o t t e d l i n e s 1 and 2 ) .

However, on t h e r i g h t - h a n d edge o f t h e

p e r t u r b a t i o n ( d o t t e d l i n e 3) t h e c r o s s i n g o f t h e water mass boundary i s isopycnal,

i . e . w i t h o u t any d e n s i t y jump.

Thermohaline p e r t u r b a t i o n s along

t h e r e l a t i v e l y more v a r i a b l e s e c t i o n of t h e 1979 experiment are even harder t o detect.

The f i l t e r i n g o f t h e i n t e r n a l waves g i v e s a p i c t u r e w i t h i r r e g u -

l a r v a r i a b i l i t y (Fig.

6).

Nevertheless,

an 11 km l o n g p e r t u r b a t i o n ( t h e

amplitude o f t h e temperature change i s 1.3OC, change 0 . 1 O/oo)

and t h a t o f t h e s a l i n i t y

can be d i s t i n g u i s h e d ; 10 km f u r t h e r , a c o n s i d e r a b l y l a r g e r

p e r t u r b a t i o n begins.

Two problems i n s t u d y i n g t h i s t y p e o f v a r i a b i l i t y are

t h e f a c t s t h a t p o i n t s on t h e T-S plane a r e g r e a t l y s c a t t e r e d , and t h a t t h e density r e l a t i o n s o f the perturbations are d i f f i c u l t t o elucidate. CONCLUSION F i n a l l y , we would l i k e t o say a few words a b o u t . t h e o r i g i n o f t h e t h e r mohal i n e p e r t u r b a t i o n s . "cold-fresh"

We have observed o n l y two types o f p e r t u r b a t i o n s :

and "warm-salty".

Those types i n d i c a t e w i t h h i g h p r o b a b i l i t y

t h a t d e n s i t y compensation i s achieved.

Since t h e observed patches o f water

masses w i t h d i f f e r e n t T and S c h a r a c t e r i s t i c s a r e d e n s i t y compensated, we may c a l l

7

these patches "macro-intrusions".

"cold-fresh"

B a l t i c , and t h a t t h e "warm-salty" origin.

We b e l i e v e t h a t t h e observed

i n t r u s i o n was advected from neighboring areas o f t h e n o r t h e r n i n t r u s i o n was probably o f southern B a l t i c

We note t h a t t h e f i r s t type o f p e r t u r b a t i o n s p r e v a i l e d i n t h e

summer o f 1978 and t h e second type i n t h e autumn o f 1979.

499

I

F i g u r e 6. F i g . 4).

Temperature and s a l i n i t y f i e l d s i n ot-space

(same s e c t i o n as i n

500

Salinity (%-)

F i g u r e 7.

T-S p l o t o f s e c t i o n 1 a t a depth o f 10 m.

U n f o r t u n a t e l y , our data a r e s t i l l i n s u f f i c i e n t t o answer some key quest i o n s about t h e thermohaline v a r i a b l i t y i n t h e upper l a y e r s o f t h e B a l t i c . Nevertheless,

t h e d a t a presented i n t h i s paper demonstrate t h a t t h e CTD

towing method i s useful f o r t h e study o f t h e s p a t i a l s t r u c t u r e o f t h e tempera t u r e and s a l i n i t y f i e l d s on meso- and s y n o p t i c scales.

REFERENCES A l l e n , C.H., Simpson, J.H., Carson, R.M., 1980. The s t r u c t u r e and v a r i a b i l i t y o f s h e l f sea f r o n t s as observed by an u n d u l a t i n g CTD system. Oceanologica Acta, 3(1): 59-68. I n t e r n a l waves and Cairns, J.L., 1980. V a F i a b i l i t y i n t h e G u l f o f Cadiz: globs. J. Phys. Oceanogr., g ( 4 ) : 579-595.

501 G a r g e t t , A.E., 1978. M i c r o s t r u c t u r e and f i n e s t r u c t u r e i n an upper ocean f r o n t a l regime. J. Geophys. Res. , g ( C 1 0 ) : 5123-5134. Katz, E.J., 1973. P r o f i l e o f an isopycnal surface i n t h e main thermocline o f t h e Sargasso Sea. J. Pys. Oceanogr., 3: 448-457. Katz, E.J., 1975. Tow s p e c t r a from MODE. J. Geophys. Res., 8019): 11631167. M i l l e r o , F.J., Kremling, K . , 1976. The d e n s i t i e s o f B a l t i c Sea waters. Deep-sea Res., 23: 1129-1138. Pavelson, J., Portsmuth, R . , 1981. A towed system f o r thermohaline f i e l d s measurements. The I n v e s t i g a t i o n and M o d e l l i n g o f t h e Processes i n t h e B a l t i c Sea., T a l l i n n , pp. 16-25. Perkin, R.G., Walker, E.R., 1972. S a l i n i t y c a l c u l a t i o n s from " i n s i t u " measurements. J. Geophys. Res. , 77(33). Woods, J.D., M i n n e t t , P.J., 1979. Analysis o f mesoscale t h e r m o c l i n i c i t y w i t h an example from t h e t r o p i c a l thermocline d u r i n g GATE. Deep-sea Res., 85-96.

z: