The Radiolarian biotic response during OAE2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy)

The Radiolarian biotic response during OAE2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy)

Revue de micropal´eontologie 50 (2007) 253–287 Original article The Radiolarian biotic response during OAE2. A high-resolution study across the Bona...

6MB Sizes 0 Downloads 18 Views

Revue de micropal´eontologie 50 (2007) 253–287

Original article

The Radiolarian biotic response during OAE2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy) La r´eponse biotique des Radiolaires durant le OAE2. Une e´ tude a` haute-r´esolution a` travers le niveau Bonarelli a` Bottaccione (Gubbio, Italie) Benjamin Musavu-Moussavou a,b,∗ , Taniel Danelian b , Franc¸ois Baudin c , Rodolfo Coccioni d , Franc¸ois Fr¨ohlich e a D´ epartement de g´eologie et Ureste, universit´e des sciences et techniques de Masuku, BP 943, Franceville, Gabon Universit´e Pierre-et-Marie-Curie (Paris 6), CNRS-UMR 5143, case 104, 4, place Jussieu, 75252 Paris cedex 05, France c Universit´ e Pierre-et-Marie-Curie (Paris 6), CNRS-UMR 7072, case 117, 4, place Jussieu 75252 Paris cedex 05, France d Istituto di Geologia e Centro di Geobiologia dell’Universit` a degli Studi “Carlo Bo”, Campus Scientifico, Localit`a Crocicchia, 61029 Urbino, Italy e Mus´ eum national d’histoire naturelle, 43, rue Buffon, 75005 Paris, France b

Abstract In order to improve our understanding of the radiolarian biotic response and the palaeoceanographic changes associated with the Late Cenomanian oceanic anoxic event (OAE2), a high-resolution radiolarian study was carried out across the Bonarelli level at its typical locality (Bottaccione section, central Italy). Our results confirm that a drastic radiolarian faunal change took place during the OAE2. The radiolarian turnover took place within the median part of the Bonarelli level, associated with an interval of high organic matter preservation, but relatively low values of silica. Therefore, this part constitutes a critical period in the evolutionary history of Radiolaria. A synthesis of all data available in the Umbria-Marche basin suggests that the lower part of the Bonarelli level (and underlying limestones) records mainly radiolarian extinctions (ca. 41%), while its upper part (and overlying limestones) records mainly first occurrences (ca. 35%). Our results improve understanding of the paleoecology of the family Saturnalidae, which would seem to prefer oligotrophic environments. © 2007 Elsevier Masson SAS. All rights reserved. R´esum´e Dans l’optique d’am´eliorer notre compr´ehension de la r´eponse biotique des radiolaires et des changements pal´eoc´eanographiques associ´es avec l’´ev´enement anoxique du C´enomanien terminal (OAE2), une e´ tude a` haute-r´esolution a e´ t´e effectu´ee a` travers le niveau Bonarelli de la coupe de Bottaccione (Italie centrale). Les donn´ees de cette e´ tude ont e´ t´e compl´et´ees par celles issues de la bibliographie. Nos r´esultats confirment qu’un changement drastique des faunes de radiolaires a eu lieu au cours de l’OAE2. Ce renouvellement des radiolaires a eu lieu au sein de la partie m´ediane du niveau Bonarelli, qui est associ´ee avec un intervalle de pr´eservation d’une quantit´e importante de mati`ere organique, mais des quantit´es relativement faibles de silice. Par cons´equent, cet intervalle constitue une p´eriode critique dans l’histoire e´ volutive des radiolaires. Juste avant et au sein de la premi`ere moiti´e du niveau Bonarelli, on note essentiellement des extinctions, estim´ees a` 41 %. En revanche, un large nombre de premi`eres occurrences, estim´ees a` 35 %, sont enregistr´ees dans la deuxi`eme moiti´e de ce niveau critique et juste apr`es celui-l`a. L’enregistrement des radiolaires dans la coupe de Bottaccione permet de comprendre un peu mieux la pal´eo´ecologie de la famille Saturnalidae, qui semblerait avoir une pr´ef´erence pour des environnements oligotrophiques. © 2007 Elsevier Masson SAS. All rights reserved. Keywords: Radiolaria; Oceanic anoxic events; OAE2; Umbria-Marche basin; Italy; Cretaceous; Cenomanian; Turonian ´ enements d’anoxie oc´eanique ; OAE2 ; Bassin d’Ombrie-Marche ; Italie ; Cr´etac´e ; C´enomanien ; Turonien Mots cl´es : Radiolaires ; Ev´



Corresponding author. E-mail address: [email protected] (B. Musavu-Moussavou).

0035-1598/$ – see front matter © 2007 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.revmic.2007.07.002

254

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

1. Introduction The mid Cretaceous (Barremian–Turonian) represents a remarkable greenhouse period in earth history. Sediments rich in organic carbon accumulated during distinct intervals, known as oceanic anoxic events (OAEs), thought to represent relatively short intervals of major disturbance in the marine environment (Schlanger and Jenkyns, 1976; Jenkyns, 1980). Amongst these events, the Late Cenomanian OAE2 has a global distribution and duration estimated between 400 and 600 ka (Morel, 1998; Caron et al., 1999; Scopelliti et al., 2004). OAE2 had a profound impact on the evolution and productivity of the marine biosphere (Kuhnt et al., 1986; Hallam and Wignall, 1997; Harries and Little, 1999; Leckie et al., 2002). During OAE2, Radiolaria appear to have responded to the environmental perturbation by significant changes in their abundance and assemblage composition (Marcucci Passerini et al., 1991; Erbacher, 1994; O’Dogherty, 1994; Gallicchio et al., 1996; Erbacher and Thurow, 1997; Premoli Silva et al., 1999; O’Dogherty and Guex, 2002; Musavu-Moussavou and Danelian, 2006). Based on data provided by Erbacher, 1994; O’Dogherty, 1994; Erbacher and Thurow, 1997; O’Dogherty and Guex (2002), it was respectively estimated that approximately 60% of Cenomanian species went extinct during OAE2, while ca. 50% of Turonian species first occurred during or just after this oceanic event. Both studies were based on data from Umbria-Marche basin of Italy. However, major discrepancies exist in the type and quantity of data used by the above authors: (1) the total number of species investigated for the late Cenomanian–early Turonian interval is quite different in each study (i.e., 70 species were considered by Erbacher, 1994 and 152 by O’Dogherty, 1994), (2) taxonomic concepts are quite different for a great number of species between the two authors, (3) calculation methods are different in the two works for percent extinctions and originations, (4) O’Dogherty did not consider any radiolarian data from within the Bonarelli level (BL). On the other hand, although, Erbacher (1994) studied samples from within the critical interval (BL), the number of species one finds since his work has increased substantially, or the stratigraphic range of previously found species is now modified. During the present work, we deployed a high-resolution radiolarian study across the BL and surrounding limestones with the objective to obtain an improved insight on the pattern and intensity of the radiolarian faunal change across the OAE2 in the Umbria-Marche basin (UMB). 2. Stratigraphic framework The Cretaceous part of the Umbria-Marche pelagic sequence accumulated in a basin of the Apulian block formed since the Lower Jurassic. The BL and surrounding limestones are well exposed in the classical reference section of the Bottaccione gorge (Gubbio area, Fig. 1) located a few kilometres northeast of the town of Gubbio, along the road S.S. 298. The BL represents a regional stratigraphic marker horizon that occurs towards the top of the uppermost Cenomanian to lowermost

Fig. 1. Geological sketch map of the Gubbio area (central Italy) with location of the Bottaccione section. Fig. 1. Esquisse de la carte g´eologique de la r´egion de Gubbio (Italie centrale) montrant la localisation de la section de Bottaccione.

Turonian Scaglia Bianca limestone formation. The facies of the Scaglia Bianca limestones corresponds to lithified nannofossilplanktonic foraminiferal ooze, which accumulated above the calcite compensation depth, at an estimated water-depth of 1500–2500 m (Arthur and Premoli Silva, 1982; Kuhnt, 1990). The interval studied here includes the BL and nearly 12 m of the underlying and 1 m of the overlying Scaglia Bianca limestones (Fig. 2). The rather monotonous sequence of the Scaglia Bianca limestones underlying the BL is marked at Bottaccione by the intercalation of black marls and shales, as well as several layers of nodules and lenses of dark-grey to black chert. In the studied section, the BL consists of carbonate-free olivegreen to black mudstones and Corg -rich finely laminated shales, often rich in fish remains, pyrite nodules and/or radiolaria. Shales and mudstones alternate with radiolarian-rich siliceous layers (Arthur and Premoli Silva, 1982; Coccioni et al., 1991; Coccioni and Luciani, 2004). Based on lithological criteria, the BL can be subdivided into three parts throughout the UMB (Arthur and Premoli Silva, 1982; Coccioni et al., 1991). Its lower and upper parts consist, in general, of radiolarian-rich siliceous layers, whereas its median part is dominated by black mudstones. More particularly, the 82-cm-thick BL of the Bottaccione section displays a 32-cm-thick lower siliceous part, a 16-cm-thick median shaly part and a 34-cm-thick siliceous upper part.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

255

Fig. 2. Lithostratigraphy of the studied interval of the Bottaccione section plotted against (A), radiolarian % abundance estimated on thin section, according to the diagrams of visual percentage estimation suggested by Baccelle and Bosellini (1965) (cross (x) corresponds to samples for which no thin section was produced); (B), radiolarian species diversity and (C), radiolarian preservation according to the scale suggested by Kiessling (1996) (BL, Bonarelli level). Fig. 2. Lithostratigraphie de l’intervalle e´ tudi´e de la coupe de Bottaccione, corr´el´ee avec (A), l’abondance des radiolaires en lame-mince, exprim´ee en pourcentage selon la charte de Baccelle et Bosellini, (1965) (les croix (x) correspondent a` des e´ chantillons pour lesquels des lames minces n’ont pas e´ t´e r´ealis´ees); (B), la diversit´e sp´ecifique des radiolaires et (C), leur pr´eservation selon l’´echelle propos´ee par Kiessling (1996) (BL, Bonarelli level).

256

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

3. Material and methods Study of radiolaria was carried out based on a total of 120 samples collected from the BL and surrounding limestones of the Bottaccione section (Fig. 2). The sampled lithologies consist of limestone and chert nodules and lenses from the carbonate levels and radiolarian cherts and black shales from within the BL. Samples were collected every 2 cm from within the BL and with a lower resolution (between 2 and 30 cm) from the surrounding limestones. Radiolarians were extracted following processing with 10% hydrochloric acid (for limestones samples) and 4% hydrofluoric acid (for siliceous samples), according to routine laboratory procedures (Dumitrica, 1970; Baumgartner et al., 1981; De Wever, 1982). Radiolarian abundance was estimated based on thin section observations, according to the diagrams of visual percentage estimation suggested by Baccelle and Bosellini (1965). Preservation was evaluated based on the index scale suggested by Kiessling (1996). Thirty-nine samples from the BL of the Bottaccione section were studied in an attempt to quantify their silica content. Silica was measured based on the quantitative infrared method using KBr as described by Fr¨ohlich, 1989; Fr¨ohlich and GendronBadou, 2003. Spectrum infrared was recorded in absorbance (A) from IRTF Brucker Vector 22 between 400 and 4000 cm−1 , with high resolution (1 cm−1 ). All analyses were carried out from total sample with standard mass of 0.75 mg within 300 mg of a pastille. Absorbance measurements by the graphical method allow the determination of quartz (Fig. 3). The graphical method is based on the following relationship: CX = AX /AS : CX is the concentration of constituent X; AX is the specific absorbance to one band and AS is the specific absorbance of pure constituent X at one band for a standard mass of 0.75 mg. Total organic carbon content (TOC in weight %) and hydrogen index (HI = S2 /TOC × 100) were determined using a Rock-Eval instrument, oil show analyser device (Espitali´e et al., 1985). The precision of measurement is ±0.1% for TOC. Percent extinctions and originations across the BL were calculated based on the high resolution stratigraphic data of this study, combined with all other available data from the literature for the UMB, as follows: % E = (LO/Td) × 100

% O = (FO/Td) × 100where E is the extinction, O is the origination, LO is the last occurrence, FO is the first occurrence and Td is the total diversity in each interval analysed. 4. Results 4.1. Radiolarian abundance and variations in silica content Radiolaria are rather rare in the Scaglia limestones underlying the BL (Fig. 2). They are present in noticeable quantities only at a few levels. Within the BL, Radiolaria are much more abundant (up to 50%), although their abundance fluctuates considerably. Three intervals can be discriminated within the BL, which correspond more or less to the lithological subdivisions discussed earlier. The lower part (between samples BL 1/02 and 15/02) is rich in Radiolaria (30–50% visible on thin section), the middle part is overall poor (between samples BL 16/02 and 26/02), while the upper part becomes again radiolarian-rich, although less rich than the lower part (Fig. 4). Quantification of the silica content (as well as various other mineralogical components) of the BL was attempted based on the use of infrared spectroscopy. Radiolaria are preserved essentially in quartz (rarely in chalcedony). Since hardly any detrital quartz may be observed in thin section, all measured quartz is assigned to Radiolaria. This assumption is also supported by Kuroda et al. (2005) who conducted a high-resolution study of the BL at Gorgo a Cerbara based on the use of image processing techniques and compositional mapping of cherts and shales. Concentration of silica (preserved in quartz) displays important fluctuations within the BL (Fig. 4 and Table 1). However, the trifold subdivision of the BL can be clearly confirmed quantitatively; that is a lower (a) and an upper (c) more siliceous interval, characterized by elevated values of silica (ranging between 40 and 80%), surround an essentially clayey and highly organic-rich (up to 17%) middle interval (b), characterized by lower values of silica (ranging between 20 and 39%). In spite of uncertainties due to diagenetic loss of radiolarian silica, this trifold subdivision reflects significant changes in radiolarian silica production within the BL. 4.2. Radiolarian diversity and preservation

Fig. 3. Infrared spectrum of sample BL 27/02, situated at the base of the upper part of the Bonarelli level. Fig. 3. Spectre infrarouge de l’´echantillon BL 27/02, situ´e a` la base de la partie sup´erieure du niveau Bonarelli.

Nearly half of the samples studied yielded Radiolaria, with 36 samples coming from the BL and 18 samples from the limestones surrounding this critical lithological level (Figs. 2 and 4). The fauna extracted is reasonably diverse, with a maximum of fortytwo species yielded per studied sample and eighty-eight species observed in the entire Middle Cenomanian to Lower Turonian interval studied (Figs. 2, 3 and 5). Samples BG 54, BL 1/02, BTT 564 and BTT 572 yielded the numerically most abundant radiolarian assemblages. Radiolarian preservation varies substantially throughout the section, with all assemblages from the middle part of the BL displaying average preservation (PI 4), while assemblages from the lower and upper parts of the BL display a rather good

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287 Fig. 4. Lithostratigraphic detail of the Bonarelli level at Bottaccione, plotted against (A), radiolarian % abundance estimated on thin section, according to the diagrams of visual percentage estimation suggested by Baccelle and Bosellini (1965) (cross (x) corresponds to samples for which no thin section was produced) ; (B), radiolarian species diversity and (C), radiolarian preservation according to the scale suggested by Kiessling (1996) ; (D), TOC values (according to Scopelliti et al., 2006) ; (E), HI (mgHC/gTOC) (data after Scopelliti et al., 2006) ; (F), abundance of silica measured as quartz by infrared spectroscopy ; (G), the curve of ␦13 C after Tsikos et al. (2004) and (H), radiolarian events based on this study. Fig. 4. Description lithologique du niveau Bonarelli de la coupe de Bottaccione corr´el´ee avec (A), l’abondance des radiolaires exprim´ee en pourcentage selon la charte de Baccelle et Bosellini (1965) (les croix (x) correspondent a` des e´ chantillons pour lesquels des lames minces n’ont pas e´ t´e r´ealis´ees) ; (B), la diversit´e sp´ecifique des radiolaires ; (C), leur pr´eservation selon l’´echelle propos´ee par Kiessling (1996) ; (D), les valeurs de carbone organique total (TOC) ; (E), de l’IH (mgHC/gCOT) (d’apr`es Scopelliti et al., 2006) ; (F), l’abondance de silice (en forme de quartz) ; (G), la courbe du ␦13 C selon Tsikos et al. (2004) et (H), les quelques bio´ev´enements des radiolaires reconnus sur la base de cette e´ tude.

257

258

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Fig. 5. Occurrence of Radiolaria in the studied samples of the Bottaccione section. Fig. 5. Occurrence des radiolaires au sein des e´ chantillons e´ tudi´es de la coupe de Bottaccione.

preservation (PI 2). All assemblages from limestones underlying the BL display poor preservation (PI 8), whereas assemblages from limestones overlying the BL display a rather good preservation. No correlation appears to exist between radiolarian preservation, radiolarian diversity and radiolarian abundance (see Figs. 2 and 4). 4.3. Radiolarian bioevents and patterns of faunal changes Detailed occurrence data as resulted from the study of samples from Bottaccione section are presented in Fig. 5. Because UMB is currently the palaeogeographic realm with the best documented radiolarian record across the BL, Fig. 6 combines

the data issued from the present high-resolution study with all those provided in previous studies from UMB (Marcucci Passerini et al., 1991; Erbacher, 1994; Erbacher and Thurow, 1997; O’Dogherty, 1994; Gallicchio et al., 1996; Salvini and Marcucci Passerini, 1998). The radiolarian turnover that occurs in the middle part of the BL allows the distinction of a “lower fauna” from an “upper” one, in agreement with Marcucci Passerini et al., 1991; Salvini and Marcucci Passerini (1998). Fifty-four radiolarian species last occur during the lower–middle part of the BL (lower fauna) and underlying limestones. They represent 40.6% of extinctions amongst the Upper Cenomanian radiolarian fauna. Extinction events were initiated since the Middle Cenomanian only to

Fig. 6. Radiolarian distribution across the BL in UMB. This figure synthesises data obtained during this study (e) and all those data available on the radiolarian record across the BL in UMB: (a) Marcucci Passerini et al. (1991), (b) Erbacher (1994), (c) O’Dogherty (1994) and (d) Salvini and Marcucci Passerini (1998). *, species identified under a different specific name by the cited authors. Fig.6. Distribution des radiolaires a` travers le niveau Bonarelli (NB) dans le bassin de l’Ombrie-Marches (BOM). Cette figure constitue une synth`ese des donn´ees de cette e´ tude (e) avec toutes les autres disponibles sur les radiolaires a` travers le NB de BOM : (a) Marcucci Passerini et al. (1991), (b) Erbacher (1994), (c) O’Dogherty (1994) et (d) Salvini et Marcucci Passerini (1998). *, esp`ece d´etermin´ee sous un autre nom par les auteurs correspondants.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

259

260

Fig. 6. (Continued ).

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287 Table 1 Quantitative results of infrared spectroscopy on 39 samples from the BL of the Bottaccione section Tableau 1 R´esultats d’analyses en spectroscopie infrarouge quantitative par la m´ethode du pastillage dans le KBr de 39 e´ chantillons du NB de la section de Bottacione ´ Echantillons

%Qz (695)

Smectite

BTT BL 1 BTT BL 2 BTT BL 3 BTT BL 4 BTT BL 5 BTT BL 6 BTT BL 7 BTT BL 8 BTT BL 9 BTT BL 11 BTT BL 12 BTT BL 13 BTT BL 14 BTT BL 15 BTT BL 16 BTT BL 17 BTT BL 18 BTT BL 19 BTT BL 20 BTT BL 21 BTT BL 22 BTT BL 23 BTT BL 24 BTT BL 25 BTT BL 26 BTT BL 27 BTT BL 28 BTT BL 29 BTT BL 30 BTT BL 31 BTT BL 32 BTT BL 33 BTT BL 34 BTT BL 35 BTT BL 36 BTT BL 37 BTT BL 38 BTT BL 40 BTT BL 41

46,77 66,7 57 64,62 52,67 64,74 66,45 54,7 40,87 71,9 45,27 78,86 40,94 40,15 27,7 22,15 26,02 43,08 31,35 40,97 57,61 68,78 60,22 46,12 62,55 48,22 60,75 42,12 44,15 65,65 56,63 41,71 60,35 79,95 64 68,15 54,8 32,3 48,76

38,22 27,31 15,15 7 16,32 12,67 19,35 32,5 34,35 16,57 21 7,4 49,52 48 49,12 28,83 31,61 33,15 33,5 9,85 14,78 25,25 9,5 39,22 25,87 37,45 24,75 7,22 23,07 15,2 19,6 23,91 25,83 21 22,96 9,25 41,8 54,4 12,9

261

5. Discussion The BL highlights the special paleoceanographic significance of the OAE2 in the UMB. Based on sedimentological, micropalaeontological and geochemical data, the BL is regarded as reflecting an interval of eutrophic, anoxic to euxinic conditions in the water column of the UMB, and contrasts with the oligotrophic conditions of the surrounding limestones (Jenkyns, 1980; Arthur and Premoli Silva, 1982; Coccioni et al., 1991, 1992; Tsikos et al., 2004; Scopelliti et al., 2004, 2006). Although radiolarian occurrence is greatly influenced by preservation, the absence or relative paucity of the family Saturnalidae cannot be solely explained by a differential preservation, because the ring present in all members of this family has a high preservation potential, often found as broken fragments. Therefore, their absence (or rarity) and contrasting abundance and diversity in the surrounding limestones is here interpreted as bearing an original palaeoecological significance. It points to a preference for members of this family for oligotrophic conditions, as those that prevailed during the deposition of the Scaglia limestones (Coccioni and Luciani, 2004). On the other hand, the relative abundance of Archaeodictyomitra sliteri and Stichomitra communis in the assemblages recovered from the BL, may reflect the preference of these species for eutrophic environments, although their abundance is probably also influenced by the better preservational potential of their stout tests. Within the BL, we can clearly recognize a lower and an upper assemblage (lower and upper fauna, respectively), which correspond to those previously recognized by Marcucci Passerini et al., 1991; Salvini and Marcucci Passerini, 1998. The significant radiolarian turnover that is crystallised in the middle shaly part of the BL (separating step-by-step extinctions below, from an upper interval of progressive enrichment in new species) correlates with the highest values of preserved organic matter, presence of abundant pyrite crystals and the lowest values of radiolarian abundance within the critical interval. All these suggest that the turning point in the pattern of change in radiolarian diversity took place during an interval of intensified anoxic conditions in the water column associated with a crush in radiolarian productivity. 6. Conclusions

attend their climax within the middle part of the BL. This latter interval represents a turning point in radiolarian evolution, after which mainly first occurrences are recognised in a progressive way. Forty-two species first occur in the middle–upper part of the BL (upper fauna) and the overlying lower Turonian limestones. They represent 34.7% of originations within the latest Cenomanian radiolarian fauna. Within the BL, assemblages yielded during this study are dominated by Nassellaria, and more particularly by species Archaeodityomitra sliteri and Stichomitra communis. Members of the family Saturnalidae, although abundant and diverse in the underlying limestones, disappear temporarily at the base of the BL, only to become again abundant and diverse at the base of the overlying limestones.

The high resolution analysis of the radiolarian record across the BL in its typical locality confirms and further specifies the timing and pattern of radiolarian turnover which took place during the OAE2 in UMB, as suggested previously by Erbacher and Thurow (1998). The lower part of the BL is characterized by step-by-step extinctions, which took place up to a critical level situated at the center of the middle shaly interval. This level represents an interval of intensified anoxic conditions in the UMB, as these are reflected by the abundance of preserved organic matter and pyrite crystals in the middle shale interval of the BL. It also corresponds to the lowest values in radiolarian abundance throughout the BL, indicating a radiolarian productivity crush in the UMB. It crystallises a critical turning point in the record of radiolarian diversity in this pelagic basin of Tethys, after which

262

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

a large number of new species occurred progressively. New and revised taxonomic and stratigraphic data allow improved understanding of the level of extinctions (nearly 41% of the late Cenomanian fauna) and originations (nearly 35% of the latest Cenomanian–Turonian fauna) that took place in radiolarian communities, which were overestimated in previous studies. Two Nassellarian species (Archaeodityomitra sliteri and Stichomitra communis) dominate the radiolarian assemblages within the BL, which may be indicative of a specific preference of these species to eutrophic conditions. The absence (or rarity) of Saturnalidae within the BL contrasts with their abundance and diversity in the underlying and overlying limestones and is regarded here as an ecological preference of members of this family for oligotrophic environments. 7. Systematic palaeontology Order ENTACTINARIA Kozur and Mostler, 1982 Family QUINQUECAPSULARIIDAE Dumitrica, 1975 Genus Protoxiphotractus Pessagno, 1973 Type species: Protoxiphotractus perplexus Pessagno, 1973 Protoxiphotractus ventosus O’Dogherty, 1994 Plate 1, Fig. 1 1994. Protoxiphotractus ventosus nov. sp. – O’Dogherty, p. 277, Pl. 49, Figs. 17–20. 2004. Protoxiphotractus ventosus O’Dogherty – Bragina, p. S403, Pl. 18, Fig. 1. Occurrence: In the UMB, this species is known to occur in the Lower Turonian limestones overlying the BL (O’Dogherty, 1994 and this study, sample BTT 566B). However, it is also reported from Middle–Upper Cenomanian strata of northern Turkey (Bragina, 2004). Material: Two specimens. Genus Quinquecapsularia Pessagno, 1971b Type species: Quinquecapsularia spinosa Pessagno, 1971b Quinquecapsularia parvipora (Squinabol, 1903b) Plate 1, Fig. 2 1903b. Acanthosphaera parvipora n. sp. – Squinabol, p. 115, Pl. 8, Fig. 5. 1994. Quinquecapsularia parvipora (Squinabol) – O’Dogherty, p. 269, Pl. 47, Figs. 25–28. Occurrence: This species is reported from the Middle Albian to Lower Turonian of the UMB (O’Dogherty, 1994). In this study Q. parvipora was found only in the limestones overlying the BL. Material: Four specimens. Family SATURNALIDAE Deflandre, 1953 Subfamily SATURNALINAE Deflandre, 1953 Genus Acanthocircus Squinabol, 1903b Type species: Acanthocircus irregularis Squinabol, 1903b Acanthocircus bestiarius O’Dogherty, 1994

Plate 1, Fig. 3 1973. Spongosaturnalis (?) sp. – Foreman, p. 251, Pl. 14, Figs. 6–8; non Figs. 4 and 5 (=A. venetus), 9 (=A. dendroacanthos) and Pl. 15, Figs. 2 and 3. 1994. Acanthocircus bestiarius nov. sp. – O’Dogherty, p. 257, Pl. 45, Figs. 9–13. Occurrence: During this study, A. bestiarius was found in only one sample (BL 572) coming from the limestones overlying the BL. However, this species is reported to occur in the UMB throughout Upper Cenomanian to Lower Turonian interval (U.A. 18–21 of O’Dogherty, 1994), including the limestones underlying the BL. Material: Two specimens. Acanthocircus euganeus (Squinabol, 1914) Plate 1, Fig. 4 1914. Saturnalis euganeus n. f. – Squinabol, p. 300, Pl. 24(5), Figs. 8–11. 1973. Spongosaturnalis? sp. cf. Saturnalis euganeus Squinabol – Foreman, Pl. 15, Fig. 5. 1994. Acanthocircus euganeus (Squinabol) – O’Dogherty, p. 257, Pl. 45, Figs. 14–16 (and entire synonymy). Occurrence: In the UMB, this species is known to occur in the Lower Turonian limestones overlying the BL (O’Dogherty, 1994 and this study, sample BTT 572). It is also reported from Campanian sediments of DSDP Leg 20 (Foreman, 1973). Material: Three specimens. Acanthocircus hueyi (Pessagno, 1976) Plate 1, Figs. 5–9 1976. Spongosaturninus hueyi n. sp. – Pessagno, p. 39, Pl. 12, Fig. 1. 1994. Acanthocircus hueyi (Pessagno) – Marcucci Passerini et al., Pl. 1, Fig. 2. 1994. Acanthocircus hueyi (Pessagno) – O’Dogherty, p. 260, Pl. 46, Figs. 1–5. 1998. Acanthocircus hueyi (Pessagno) – Salvini and Marcucci Passerini, Fig. 80. 2004. Acanthocircus hueyi (Pessagno) – Bragina, p. S445, Pl. 27, Figs. 5–7; Pl. 28, Fig. 4; Pl. 34; Fig. 17. 2006. Acanthocircus hueyi (Pessagno) – Musavu-Moussavou and Danelian, p. 157, Pl. 3, Fig. 7. Occurrence: In the UMB, this species is reported from the upper part of the BL (Uppermost Cenomanian according to Salvini and Marcucci Passerini, 1998) and the Lower Turonian limestones (O’Dogherty, 1994). During this study, A. hueyi was not found within the BL but only in the overlying limestones. It is also reported from Upper Cenomanian levels of the Atlantic (Demerara Rise, ODP Leg 207, Musavu-Moussavou and Danelian, 2006), Middle–Upper Turonian levels of northern Turkey (Bragina, 2004) and Middle Campanian levels of California (Pessagno, 1976). Material: 28 specimens. Acanthocircus sp. aff. A. hueyi (Pessagno, 1976) Plate 1, Fig. 10

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

263

Plate 1. Fig. 1. Protoxiphotractus ventosus O’Dogherty; sample BTT 566B. Fig. 2. Quinquecapsularia parvipora (Squinabol); sample BTT 572. Fig. 3. Acanthocircus bestiarius O’Dogherty; sample BTT 567B. Fig. 4. Acanthocircus euganeus (Squinabol); sample BTT 567B. Figs. 5–9. Acanthocircus hueyi Pessagno; 5, 6, 7. Sample BTT 572; 8. Sample BTT 566B; 9. Sample BTT 564. Fig. 10. Acanthocircus sp. aff. A. hueyi (Pessagno); sample BTT 564. Figs. 11 and 12. Acanthocircus horridus (Squinabol); sample BTT 572. Fig. 13. Acanthocircus irregularis Squinabol; sample BG 48. Figs. 14 and 15. Acanthocircus tympanum O’Dogherty; sample BTT 572. Figs. 16 and 17. Acanthocircus venetus (Squinabol); sample BTT 567B. Fig. 18. Acanthocircus sp. aff. A. venetus (Squinabol); sample BTT 572. Fig. 19. Vitorfus brustolensis (Squinabol); sample BG 48. Fig. 20. Vitorfus minimus (Squinabol); sample BTT 567B. Fig. 21. Vitorfus morini Empson-Morin; sample BTT 564.

264

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

aff. 1976. Spongosaturninus hueyi n. sp. – Pessagno, p. 39, Pl. 12, Fig. 1. aff. 1994. Acanthocircus hueyi (Pessagno) – O’Dogherty, p. 260, Pl. 46, Figs. 1–5. Description: Form bearing a subrectangular ring which possesses at least six small peripheral spines and displays a slightly developed internal blade. Material: One specimen.

Occurrence: In the UMB, this species is common in the Lower Turonian limestones overlying the BL (O’Dogherty, 1994 and this study). However, it is also reported from the top of the BL of the southern Alps (Salvini and Marcucci Passerini, 1998). Otherwise, it is also reported from Lower Turonian levels of Morocco (Kuhnt et al., 1986), Turkey (Yurtsever et al., 2003) and the Crimean Mountains (Bragina, 2004). Material: Three specimens.

Acanthocircus horridus Squinabol, 1903b Plate 1, Figs. 11 and 12 1903b. Acanthocircus horridus n. sp. – Squinabol, p. 125, Pl. 9, Fig. 3. 1994. Acanthocircus horridus Squinabol – O’Dogherty, p. 253, Pl. 44, Figs. 1–6 (and entire synonymy). 2003. Mesosaturnalis horridus (Squinabol) – Yurtsever et al., Text-Fig. 6H. 2004. Acanthocircus horridus Squinabol – Bragina, p. S445, Pl. 27, Figs. 4 and 9. Occurrence: In the UMB, A. horridus is reported from Middle Albian to Upper Cenomanian levels (U.A. 12–18 of O’Dogherty, 1994). During this study, this species was found to occur in limestones overlying the BL (Lower Turonian), extending thus its currently known age range. The species is also reported from Middle–Upper Cenomanian levels of northern Turkey (Yurtsever et al., 2003; Bragina, 2004). Material: Three specimens.

Acanthocircus venetus (Squinabol, 1914) Plate 1, Figs. 16 and 17 1914. Saturnalis venetus n. f. – Squinabol, p. 269, 299, Pl. 20.1, Fig. 2; Pl. 24.5, Fig. 1. 1973. Spongosaturnalis (?) sp. – Foreman, p. 261, Pl. 14, Figs. 4 and 5; non Figs. 6, 7, 8 (=A. bestiarius), 9 (=A. dendroacanthos) and Pl. 15, Fig. 2 and 3. 1994. Mesosaturnalis praeclarus (Foreman) – Erbacher, p. 102, Pl. 19, Fig. 5. 1994. Acanthocircus venetus (Squinabol) – O’Dogherty, p. 256, Pl. 45, Figs. 1–8 (and entire synonymy). 1998. Acanthocircus venetus (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 8r. 2003. Mesosaturnalis venetus (Squinabol) – Yurtsever et al., Text-Fig. 6J. 2004. Acanthocircus venetus (Squinabol) – Gorican and Smuc, Pl. 1, Fig. 1. Occurrence: In the UMB, this species is reported from Upper Albian to Lower Turonian levels (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). During this study, A. venetus was found only in the limestones surrounding BL. It is also reported from Upper Albian levels of Slovenia (Gorican and Smuc, 2004) and from Cenomanian to Lower Turonian levels of Turkey (Yurtsever et al., 2003). Material: 23 specimens.

Acanthocircus irregularis Squinabol, 1903b Plate 1, Fig. 13 1903b. Acanthocircus irregularis n. sp. – Squinabol, p. 125, Pl. 9, Fig. 6. 1994. Acanthocircus sp. EJ1 – Erbacher, p. 90, Pl. 17, Figs. 4 and 5. 1994. Acanthocircus irregularis Squinabol – O’Dogherty, p. 264, Pl. 46, Figs. 17–25 (and entire synonymy). Occurrence: This species is known from Middle Albian to Upper Cenomanian levels of the UMB (U.A 11–18, O’Dogherty, 1994). During this study, the species was found only in one sample (BG 54) dated as Middle Cenomanian. Material: One specimen. Acanthocircus tympanum O’Dogherty, 1994 Plate 1, Figs. 14 and 15 1986. Acanthocircus sp. nov. – Kuhnt et al., Pl. 8, Fig. M. 1994. Mesosaturnalis sp. EJ2 – Erbacher, p. 102, Pl. 19, Figs. 6 and 7. 1994. Acanthocircus tympanum nov. sp. – O’Dogherty, p. 259, Pl. 45, Figs. 17–24. 1999. Acanthocircus tympanum O’Dogherty – Khan et al., Pl. 2, Fig. m. 2003. Mesosaturnalis tympanum (O’Dogherty) – Yurtsever et al., Text-Fig. 6I. 2004. Acanthocircus tympanum O’Dogherty – Bragina, p. S447, Pl. 34, Fig. 15.

Acanthocircus sp. aff. A. venetus (Squinabol, 1914) Plate 1, Fig. 18 aff. 1914. Saturnalis venetus n. f. – Squinabol, p. 269, 299, Pl. 20(1), Fig. 2; Pl. 24(5), Fig. 1. aff. 1994. Acanthocircus venetus (Squinabol) – O’Dogherty, p. 256, Pl. 45, Figs. 1–8. aff. 1994. Mesosaturnalis preclarus (Foreman) – Erbacher, p. 102, Pl. 19, Fig. 5. Remarks: This form differs from A. venetus (Pessagno) by having seven spines in total, whereas A. venetus (Pessagno) has eight spines in minimum. Material: One specimen. Genus Vitorfus Pessagno, 1977b Type species: Saturnalis brustolensis Squinabol, 1903b Vitorfus brustolensis (Squinabol, 1903b) Plate 1, Fig. 19 1903b. Saturnalis brustolensis n. sp. – Squinabol, p. 112, Pl. 10, Fig. 4.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

1994. Vitorfus brustolensis (Squinabol) – Erbacher, p. 117, Pl. 13, Fig. 1. 1994. Vitorfus brustolensis (Squinabol) – O’Dogherty, p. 266, Pl. 47, Figs. 8–11 (and entire synonymy). 2004. Vitorfus brustolensis (Squinabol) – Bragina, p. S447, Pl. 28, Figs. 6, 8; Pl. 34, Fig. 13. Occurrence: In the UMB, this species is known from Upper Albian to Lower Turonian levels (Erbacher, 1994; O’Dogherty, 1994). During this study, V. brustolensis was found only in one sample (BG 54, Middle Cenomanian). It is also reported from Middle Cenomanian strata of northern Turkey and from the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: One specimen. Vitorfus minimus (Squinabol, 1914) Plate 1, Fig. 20 1914. Saturnalis minimus n. f. – Squinabol, p. 287, Pl. 23[4], Figs. 6 and 6a. 1944. Saturnalis lateralis n. sp. – Campbell and Clark, p. 6, Pl. 1, Figs. 7, 10, 11, 13, 15. 1994. Vitorfus brustolensis (Squinabol) – Marcucci et al., Pl. 1, Fig. 11. 1994. Vitorfus minimus (Squinabol) – O’Dogherty, p. 266, Pl. 47, Figs. 4–7. 1999. Vitorfus minimus (Squinabol) – Khan et al., Pl. 2, Fig. j. Occurrence: During this study, this species was found only in the Lower Turonian limestones overlying the BL (sample BTT 567B). However, in the UMB, V. minimus is known from Upper Albian to Lower Turonian levels (Marcucci et al., 1994; O’Dogherty, 1994). It is also reported from Cenomanian to Turonian strata of Spain (Khan et al., 1999). Material: One specimen. Vitorfus morini Empson-Morin, 1981 Plate 1, Fig. 21 1981. Vitorfus morini n. sp. – Empson-Morin, p. 261, Pl. 4, Figs. 7a–8d. 1994. Vitorfus morini Empson-Morin – Marcucci et al., Pl. 1, Fig. 10. 1994. Vitorfus morini Empson-Morin – O’Dogherty, p. 267, Pl. 47, Figs. 12–15 (and entire synonymy). 1998. Vitorfus morini Empson-Morin – Salvini and Marcucci Passerini, Fig. 10t. 2003. Vitorfus morini Empson-Morin – Yurtsever et al., TextFig. 6K. 2004. Vitorfus morini Empson-Morin – Bragina, p. S449, Pl. 34, Fig. 8. 2004. Vitorfus morini Empson-Morin – Scopelliti et al., TextFig. 8(14). Occurrence: Lower Turonian limestones overlying the BL of UMB (O’Dogherty, 1994 and this study). V. morini is not found so far within the BL of the UMB, but it is reported by Salvini and Marcucci Passerini (1998) in the BL of the Southern Alps. Outside Italy, this species is also known to occur in

265

Lower Turonian levels of Turkey (Yurtsever et al., 2003) and in Lower Turonian strata of the Crimean Mountains (Bragina, 2004). Material: One specimen. Order NASSELLARIA Ehrenberg, 1875 Family ARCHAEODICTYOMITRIDAE Pessagno, 1976 Genus Archaeodictyomitra Pessagno, 1976 Type species: Archaeodictyomitra squinaboli Pessagno, 1976 Archaeodictyomitra crassispina (Squinabol, 1903b) Plate 2, Fig. 1 1903b. Diplostrobus crassispina n. sp. – Squinabol, p. 140, Pl. 8, Fig. 37. 1986. Mita gracilis (Squinabol) – Kuhnt et al., Pl. 7, Fig. O. 1994. Dictyomitra crassispina (Squinabol) – O’Dogherty, p. 79, Pl. 4, Figs. 2–7. 2001. Archaeodictyomitra crassispina (Squinabol) – De Wever et al., Text-Fig. 173.4. Occurrence: In the UMB, this species is reported in Upper Cenomanian strata underlying the BL (U.A. 17–18 of O’Dogherty, 1994). During the present study, A. crassispina was found in the lowermost part of the BL. The species is also reported from Upper Cenomanian strata of Morocco (Kuhnt et al., 1986). Material: Two specimens. Archaeodictyomitra sp. cf. A. crebrisulcata (Squinabol, 1904) Plate 2, Fig. 2 cf. 1904. Dictyomitra crebrisulcata n. sp. – Squinabol, p. 231, Pl. 10, Fig. 1. cf. 1994. Dictyomitra crebrisulcata Squinabol – O’Dogherty, p. 75, Pl. 2, Figs. 12–17. Occurrence: This species is reported from Upper Cenomanian to Lower Turonian of the UMB (U.A. 17–20 of O’Dogherty, 1994). During this study, few poorly preserved specimens were only found within the BL. Material: Four specimens. Archaeodictyomitra montisserei (Squinabol, 1903b) Plate 2, Fig. 3 1903b. Stichophormis Montis Serei n. sp. – Squinabol, p. 137, Pl. 8, Fig. 38. cf. 1977b. Zifondium lassensis n. sp. – Pessagno, p. 47, Pl. 7, Figs. 4, 20, 22. 1994. Dictyomitra montisserei (Squinabol) – O’Dogherty, p. 77, Pl. 3, Figs. 18, 20, 22, 23 (only). 1994. Archaeodictyomitra simplex Pessagno – Erbacher, Pl. 9, Fig. 18 (only). 2004. Dictyomitra montisserei (Squinabol) – Bragina, p. S374, Pl. 8, Figs. 4 and 7, non Fig. 2 and 3 (=A. simplex). 2004. Archaeodictyomitra montisserei (Squinabol) – Gorican and Smuc, Pl. 3, Fig. 2 and 3?.

266

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Plate 2. Fig. 1. Archaeodictyomitra crassispina (Squinabol); sample BTT 549. Fig. 2. Archaeodictyomitra sp. cf. A. crebrisulcata (Squinabol); sample BTT BL 1/02. Fig. 3. Archaeodictyomitra montisserei (Squinabol); sample BTT BL 19/02. Fig. 4. Archaeodictyomitra turritum (Squinabol); sample BTT BL 1/02. Fig. 5. Archaeodictyomitra simplex Pessagno; sample BTT BL 1/02. Figs. 6–8. Archaeodictyomitra sliteri Pessagno; 6. Sample BTT BL 572; 7. Sample BTT BL 19/02; 8. Sample BTT BL 6/02. Figs. 9–11. Dictyomitra formosa Squinabol; 9. Sample BTT BL 18/02; 10, 11. Sample BTT BL 1/02; Figs. 12 and 13. Dictyomitra multicostata Zittel; sample BTT 564. Figs. 14 and 15. Dictyomitra sp. cf. D. densicostata Pessagno; sample BTT 564. Figs. 16 and 17. Mita gracilis (Squinabol); sample BTT BL 1/02. Fig. 18. Thanarla brouweri (Squinabol); sample BTT BL 1/02. Figs. 19 and 20. Thanarla pulchra (Squinabol); 19. Sample BTT BL 8/02; 20. Sample BTT BL 1/02. Figs. 21 and 22. Thanarla veneta (Squinabol); 21. Sample 15/02; 22. Sample 35/02.

Occurrence: In the UMB, this species is reported throughout the Middle Albian to Lower Turonian (O’Dogherty, 1994 and this study). It is also reported from Cenomanian strata of Northern Turkey (Bragina, 2004). Material: More than 100 specimens. Archaeodictyomitra turritum (Squinabol, 1904) Plate 2, Fig. 4

1904. Eucyrtidium turritum n. sp. – Squinabol, p. 234, Pl. 10, Fig. 9. 1994. Dictyomitra turritum (Squinabol) – O’Dogherty, p. 74, Pl. 2, Figs. 7–11 (and entire synonymy). Occurrence: In the UMB, this species is reported from Lower to Upper Cenomanian strata underlying the BL (U.A. 16–18 of O’Dogherty, 1994). During the present study, A. turritum was found at the base of the BL.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Material: One specimen. Archaeodictyomitra simplex Pessagno, 1977b Plate 2, Fig. 5 1977b. Archaeodictyomitra simplex n. sp. – Pessagno, p. 43, Pl. 6, Figs. 1, 24, 28. 1988. Archaeodictyomitra simplex Pessagno – Thurow, p. 398, Pl. 3, Fig. 9. 1989. Archaeodictyomitra simplex Pessagno – Tumanda, p. 36, Pl. 8, Fig. 2. pars 1994. Dictyomitra montisserei (Squinabol) – O’Dogherty, p. 77, Pl. 3, Figs. 1–4, 6–10, 16, 17, 24 (only). ?1994. Archaeodictyomitra sp. cf. A. sliteri Pessagno – Pignotti, Pl. 1, Fig. 17. 2004. Archaeodictyomitra simplex Pessagno – Bragina, p. S370, Pl. 7, Figs. 12 and 14. 2004. Dictyomitra montisserei Pessagno – Bragina, p. S370, Pl. 8, Figs. 2 and 3. 2006. Archaeodictyomitra simplex Pessagno – MusavuMoussavou and Danelian, p. 149, Pl. 1, Figs. 1–3. Occurrence: Albian of California (Pessagno, 1977b), Albian of Japan (Tumanda, 1989), Middle–Upper Cenomanian of northern Turkey (Bragina, 2004), Upper Cenomanian-Lower Turonian of Demerara Rise, ODP Leg 207 (Musavu-Moussavou and Danelian, 2006). During this study, A. simplex was found in the lower part of the BL and underlying limestones. Material: Approximately 60 specimens. Archaeodictyomitra sliteri Pessagno, 1977b Plate 2, Figs. 6–8 1977b. Archaeodictyomitra sliteri n. sp. – Pessagno, p. 44, Pl. 6, Figs. 3, 4, 22, 23, 27. 1989. Archaeodictyomitra sliteri Pessagno – Tumanda, p. 36, Pl. 7, Fig. 2. 1991. Archaeodictyomitra sliteri Pessagno – Marcucci Passerini et al., Text-Figs. 3n-o. 1994. Archaeodictyomitra sliteri Pessagno – Erbacher, p. 93, Pl. 20, Fig. 3. 1994. Archaeodictyomitra sp. – Munasri and Bambang TextFig. 7.1. pars 1994. Dictyomitra montisserei (Squinabol) – O’Dogherty, p. 77, Pl. 3, Figs. 15, 28, 29 (only). 1994. Archaeodictyomitra sliteri Pessagno – Pignotti, Pl. 1, Fig. 7. 1996. Dictyomitra montisserei (Squinabol) – Gallicchio et al., Pl. 1, Fig. 3. 1998. Dictyomitra montisserei (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 7r. 2004. Archaeodictyomitra sliteri Pessagno – Bragina, p. S372, Pl. 7, Figs. 6, 10, 11; Pl. 8, Figs. 8–10, 12; Pl. 34, Fig. 6. 2006. Archaeodictyomitra sliteri Pessagno – MusavuMoussavou and Danelian, p. 149, Pl. 1, Fig. 11. Occurrence: Cenomanian of California (Pessagno, 1977b); Upper Albian to Lower Turonian of Italy and Upper Albian

267

to Cenomanian of the northern Atlantic (Erbacher, 1994); Middle–Upper Cenomanian of northern Turkey; Lower Turonian of Crimean Mountains (Bragina, 2004); Upper Cenomanian of the central Atlantic (Demerara Rise, ODP Leg 207, MusavuMoussavou and Danelian, 2006). During this study, A. sliteri was found throughout the BL. Material: More than 150 specimens. Genus Dictyomitra Zittel, 1876 Type species: Dictyomitra multicostata Zittel, 1876 Dictyomitra formosa Squinabol, 1904 Plate 2, Figs. 9–11 1904. Dictyomitra formosa n. sp. – Squinabol, p. 232, Pl. 10, Fig. 4. 1973. Dictyomitra torquata Foreman – Foreman, Pl. 15, Figs. 9–11. 1975. Dictyomitra duodecimcostata (Squinabol) – Foreman p. 614, Pl. 1G, Figs. 5, 6; Pl. 7, Fig. 8. 1976. Dictyomitra formosa Squinabol – Pessagno, p. 51, Pl. 8, Figs. 10–12. 1994. Dictyomitra formosa Squinabol – Munasri and Bambang, Text-Figs. 5.1–5.3, 6.1–6.3. 1994. Dictyomitra formosa Squinabol – O’Dogherty, p. 80, Pl. 4, Figs. 8–12 (and entire synonymy). 1994. Dictyomitra formosa Squinabol – Pignotti, Pl. 2, Figs. 5, 16. Occurrence: In this study, species D. formosa was only found in lower–middle part of the BL and the underlying Cenomanian limestones. However, in other studies from the UMB it is known to occur throughout the Late Albian to Early Turonian interval (O’Dogherty, 1994; Pignotti, 1994). It is also reported from Lower Coniacian to Lower Campanian strata of California (Pessagno, 1976). Material: 35 specimens. Dictyomitra multicostata Zittel, 1876 Plate 2, Figs. 12 and 13 1876. Dictyomitra multicostata n. sp. – Zittel, p. 81, Pl. 2, Figs. 2–4. 1976. Dictyomitra multicostata Zittel – Pessagno, p. 52, Pl. 14, Figs. 4–9. 1994. Dictyomitra multicostata Zittel – O’Dogherty, p. 82, Pl. 4, Figs. 17–19 (and entire synonymy). 1994. Dictyomitra multicostata Zittel – Munasri and Bambang, Text-Figs. 7.3–7.5. 1998. Dictyomitra multicostata Zittel – Erbacher, p. 369, Pl. 1, Fig. 5. 1998. Dictyomitra ex. gr. multicostata Zittel – Vishnevskaya and De Wever, Pl. 2, Figs. 22–25; Pl. 3, Fig. 17–19. 2006. Dictyomitra multicostata Zittel – Musavu-Moussavou and Danelian, p. 151, Pl. 1, Fig. 6. Occurrence: In the UMB, this species is known to first occur in the Lower Turonian limestones overlying the BL (O’Dogherty, 1994 and this study). It is also reported from Upper Turonian to Santonian levels of the equatorial Atlantic

268

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

(Erbacher, 1998; Musavu-Moussavou and Danelian, 2006) and from Middle Campanian to Mastrichtian strata of California (Pessagno, 1976). Material: Five specimens. Dictyomitra sp. cf. D. densicostata Pessagno, 1976 Plate 2, Figs. 14 and 15 cf. 1976. Dictyomitra densicostata n. sp. – Pessagno, p. 51, Pl. 14, Figs. 10–14. cf. 1998. Dictyomitra densicostata Pessagno – Vishnevskaya and De Wever, Pl. 3, Fig. 20. Remarks: These specimens are doubtfully assigned to D. densicostata because of their reduced height (200 ␮m in maximum). Material: Three specimens. Genus Mita Pessagno, 1977b Type species: Mita magnifica Pessagno, 1977b Mita gracilis (Squinabol, 1903b) Plate 2, Figs. 16 and 17 1903b. Sethoconus gracilis n. sp. – Squinabol, p. 131, Pl. 10, Fig. 13. 1982. Mita gracilis (Squinabol) – Taketani, p. 60, Pl. 5, Figs. 2a and 2b; Pl. 12, Fig. 3. 1982. Mita regina (Campbell and Clark) – Taketani, p. 60, Pl. 5, Figs. 3a and 3b. 1988. Mita gracilis (Squinabol) – Thurow, p. 402, Pl. 3, Fig. 2. 1994. Mita gracilis (Squinabol) – Erbacher, p. 102, Pl. 9, Figs. 10 and 11. 1994. Dictyomitra gracilis (Squinabol) – O’Dogherty, p. 73, Pl. 1, Figs. 12–25. 1994. Mita gracilis (Squinabol) - Urquhart, Text-Figs. 5.8 and 5.14. 1996. Dictyomitra gracilis (Squinabol) – Gallicchio et al., Pl. 1, Fig. 4. 1998. Mita gracilis (Squinabol) – Erbacher, p. 370, Pl. 1, Fig. 13. non 2004. Thanarla gracilis (Squinabol) – Bragina, p. S369, Pl. 7, Fig. 9. Occurrence: In the UMB, this species was known previously from Lower Albian to Middle Cenomanian strata (Erbacher, 1994; O’Dogherty, 1994). During this study, we found M. gracilis at the base of the BL. The species is also reported from Middle to Upper Cenomanian levels of the equatorial Atlantic (Erbacher, 1998) and from lower Albian levels of the northern Atlantic (Erbacher and Thurow, 1998). Material: 13 specimens. Genus Thanarla Pessagno, 1977b Type species: Phormocyrtis veneta Squinabol, 1903b Thanarla brouweri (Tan, 1927) Plate 2, Fig. 18

1927. Eucyrtidium Brouweri spec. nov. typ. – Tan, p. 58, Pl. 11, Figs. 89a and 89b. 1994. Thanarla brouweri (Tan) – O’Dogherty, p. 86, Pl. 5, Figs. 1–12 (and entire synonymy). 2000. Thanarla conica (Aliev) – Mekik Pl. 5, Fig. 28. 2003. Thanarla brouweri (Tan) – Ziabrev et al. Figs. 3–43. Occurrence: In UMB, this species is reported from Barremian (and older) to middle Albian strata (U.A. 1–11 of O’Dogherty, 1994). It is the first time that it is reported from within the BL. Material: One specimen. Thanarla pulchra (Squinabol, 1904) Plate 2, Figs. 19 and 20 1904. Sethamphora pulchra n. sp. – Squinabol, p. 213, Pl. 5, Fig. 8. 1975. Dictyomitra pulchra (Squinabol) – Dumitrica, TextFig. 2.7. 1976. Lithocampe (?) elegantissima Cita – Pessagno, p. 55, Pl. 3, Fig. 6. 1982. Thanarla pulchra (Squinabol) – Taketani, p. 59, Pl. 11, Fig. 19. 1982. Thanarla elegantissima (Cita) – Taketani, p. 59, Pl. 11, Figs. 17 and 18. 1989. Thanarla pulchra (Squinabol) – Tumanda, p. 40, Pl. 3, Fig. 17. 1991. Thanarla elegantissima (Cita) – Marcucci Passerini et al., Text-Figs. 3a and 3b. 1994. Thanarla pulchra (Squinabol) – O’Dogherty, p. 91, Pl. 5, Figs. 28–33 (and entire synonymy). 1995. Thanarla elegantissima (Cita) – Bak, p. 21, Fig-text. 10k, l. 1998. Thanarla pulchra (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 6u. 1998. Thanarla elegantissima (Cita) – Salvini and Marcucci Passerini, Text-Fig. 6t. 1999. Thanarla pulchra (Squinabol) – Bak, Pl. 1, Fig. 9. 2002. Thanarla pulchra (Squinabol) – Suzuki et al., p. 57, Text-Figs. 2 and 3. Occurrence: In the UMB, this species is reported from Middle Albian to Upper Cenomanian strata (U.A. 11–18 of O’Dogherty, 1994; this study). However, it is also reported from within the BL by Marcucci Passerini et al., 1991; Salvini and Marcucci Passerini, 1998, as was the case of this study. It is also reported from the Lower Cenomanian of California (Pessagno, 1976), the Middle Albian to Upper Cenomanian of Poland (Bak, 1999) and the Albian of Colombia (Suzuki et al., 2002). Material: 23 specimens. Thanarla veneta (Squinabol, 1903b) Plate 2, Figs. 21 and 22 1903b. Phormocyrtis veneta n. sp. – Squinabol, p. 134, Pl. 9; Fig. 30.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

1975. Dictyomitra veneta (Squinabol) – Dumitrica, TextFig. 2.17. 1976. Phormocyrtis (?) veneta Squinabol – Pessagno, p. 55, Pl. 3, Fig. 10. 1977b. Thanarla veneta (Squinabol) – Pessagno, p. 46, Pl. 2, Fig. 8; Pl. 7, Figs. 5, 12, 17, 19, 25. 1982. Thanarla veneta (Squinabol) – Taketani, p. 60, Pl. 5, Figs. 1a–c. 1994. Thanarla veneta (Squinabol) – Erbacher, p. 116, Pl. 10, Fig. 4; Pl. 20, Fig. 4. 1994. Thanarla veneta (Squinabol) – O’Dogherty, p. 92, Pl. 6, Figs. 1–4 (and entire synonymy). 1998. Thanarla veneta (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 8k. 1999. Thanarla veneta (Squinabol) – Premoli Silva et al., Pl. 4, Fig. 12. 2004. Thanarla veneta (Squinabol) – Scopelliti et al., Fig. 8(13). 2004. Thanarla veneta (Squinabol) – Bragina, p. S369, Pl. 7, Figs. 7 and 8; Pl. 33 Fig. 11. Occurrence: In the UMB, this species is known from Middle Albian to Lower Turonian levels (Erbacher, 1994; O’Dogherty, 1994). More precisely, during this study, T. veneta was found to occur last in the upper part of the BL, while Erbacher (1994) found it also above the critical interval. This species is also reported from the Upper Cenomanian of northern Turkey, the Lower Turonian of the Crimean Mountains (Bragina, 2004) and from Santonian strata of Russia (Vishnevskaya and De Wever, 1998). Material: 15 specimens. Family CANNOBOTRYIDAE Haeckel, 1881 Genus Rhopalosyringium Campbell and Clark, 1944 Type species: Rhopalosyringium magnificum Campbell and Clark, 1944 Rhopalosyringium elegans (Squinabol, 1903b) Plate 3, Fig. 1 1903b. Lychnocanium elegans n. sp. – Squinabol, p. 130, Pl. 8, Fig. 34. 1994. Rhopalosyringium elegans (Squinabol) – O’Dogherty, p. 166, Pl. 23, Figs. 1–6. 2003. Rhopalosyringium elegans (Squinabol) – Yurtsever et al., Text-Fig. 7.P. Occurrence: In the UMB, R. elegans is known from Cenomanian limestones underlying the BL (U.A. 17–19 of O’Dogherty, 1994). During this study, the species was found in only one sample (BL 1/02) coming from the base of the BL. It is also reported from Cenomanian strata of Turkey (Yurtsever et al., 2003). Material: Three specimens. Rhopalosyringium majuroensis Schaaf, 1981 Plate 3, Fig. 2 1981. Rhopalosyringium majuroensis n. sp. – Schaaf, p. 437, Pl. 6, Figs. 2 and 3; Pl. 23, Fig. 5.

269

1994. Rhopalosyringium mosquense (Smirnova and Aliev) O’Dogherty, p. 165, Pl. 22, Figs. 1–6. 1998. Rhopalosyringium majuroensis Schaaf – Salvini and Marcucci Passerini, Fig. 6p. 2004. Rhopalosyringium majuroensis Schaaf – Bragina, p. S357, Pl. 3, Figs. 7–10. 2006. Rhopalosyringium majuroensis Schaaf – MusavuMoussavou and Danelian, p. 154, Pl. 2, Fig. 1. Occurrence: During this study, this species was found in only one sample (BL 1/02) coming from the base of the BL. But in the UMB, R. majuroensis (=R. mosquense) is known throughout the Albian to uppermost Cenomanian (U.A. 10–19 of O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). It is also known from Middle–Upper Cenomanian levels of northern Turkey (Bragina, 2004) and Upper Cenomanian sediments of the equatorial Atlantic (ODP Leg 207, Musavu-Moussavou and Danelian, 2006). Material: Two specimens. Rhopalosyringium scissum O’Dogherty, 1994 Plate 3, Fig. 3 1994. Rhopalosyringium scissum nov. sp. – O’Dogherty, p. 168, Pl. 23, Figs. 12–16. 1998. Rhopalosyringium scissum O’Dogherty – Salvini and Marcucci Passerini, Fig. 10l. Occurrence: In the UMB, this species is known to occur in the Lower Turonian limestones overlying the BL (O’Dogherty, 1994; this study, sample BTT 566B). However, it is also reported from the top of the BL of Southern Alps (Salvini and Marcucci Passerini, 1998). Material: Two specimens. Family CARPOCANIIDAE Haeckel, 1881 emend. Riedel, 1967 Subfamily DIACANTHOCAPSINAE O’Dogherty, 1994 Genus Diacanthocapsa Squinabol, 1903a Type species: Diacanthocapsa euganea Squinabol, 1903b Diacanthocapsa ovoidea Dumitrica, 1970 Plate 3, Fig. 4 1970. Diacanthocapsa ovoidea n. sp. – Dumitrica, p. 63, Pl. 5, Figs. 25a and 25b; Pl. 6, Figs. 26–29b. 1982. Diacanthocapsa brevithorax Dumitrica – Taketani, p. 68, Pl. 8, Figs. 1a and 1b. 1994. Diacanthocapsa ovoidea Dumitrica – O’Dogherty, p. 220, Pl. 37, Figs. 1–6 (and entire synonymy). 1998. Diacanthocapsa ovoidea Dumitrica – Salvini and Marcucci Passerini, Text-Fig. 9o. Occurrence: In the UMB, D. ovoidea is reported from the Middle Cenomanian to Lower Turonian interval (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). During this study, it was found in only one sample (BL 29/02) coming from the BL. Material: Three specimens. Genus Guttacapsa O’Dogherty, 1994 Type species: Halicapsa gutta Squinabol, 1903b

270

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Plate 3. Fig. 1. Rhopalosyringium elegans (Squinabol); sample BTT BL 1/02. Fig. 2. Rhopalosyringium majuroensis Schaaf; sample BTT BL 1/02. Fig. 3. Rhopalosyringium scissum O’Dogherty; sample BTT 566B. Fig. 4. Diacanthocapsa ovoidea Dumitrica; sample BTT BL 29/02. Fig. 5. Guttacapsa biacuta O’Dogherty; sample BTT BL 1/02. Fig. 6. Guttacapsa gutta (Squinabol); sample BTT BL 1/02. Fig. 7. Sciadiocapsa sp. cf. S. monticelloensis (Pessagno); sample BTT 572. Fig. 8. Pseudodictyomitra pentacolaensis Pessagno; sample BTT BL 1/02. Figs. 9 and 10. Pseudodictyomitra pseudomacrocephala (Squinabol); 9. Sample BTT BL 6/02; 10. Sample BTT BL 1/02. Figs. 11 and 12. Pseudodictyomitra tiara (Holmes); 11. Sample BTT BL 6/02; 12. Sample BTT BL 2/02. Fig. 13. Distylocapsa sp. cf. D. squama O’Dogherty; sample BTT BL 29/02. Fig. 14. Dorypyle ovoidea (Squinabol); sample BTT BL 1/02. Figs. 15 and 16. Squinabollum fossile (Squinabol); sample BTT BL 22/02. Fig. 17. Ultranapora dendroacanthos (Squinabol); sample BTT 564. Fig. 18. Cryptamphorella conara (Foreman); sample BTT 563. Figs. 19 and 20. Holocryptocanium barbui Dumitrica; sample BTT BL 15/02. Figs. 21 and 22. Holocryptocanium tuberculatum; 21. Sample BTT BL 15/02; 22. Sample BTT BL 1/02. Fig. 23. Hemicryptocapsa polyhedra; sample BTT BL 11/02.

Guttacapsa biacuta (Squinabol, 1903b) Plate 3, Fig. 5 1903b. Cenellipsis biacutus n. sp. – Squinabol, p. 116, Pl. 8, Fig. 24. 1994. Guttacapsa biacuta (Squinabol) – O’Dogherty, p. 226, Pl. 37, Figs. 31–35 (and entire synonymy).

1998. Guttacapsa biacuta (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 6g. 1998. Guttacapsa biacuta (Squinabol) – Erbacher, p. 369, Pl. 1, Fig. 15. Occurrence: In the UMB, this species is known to occur in the Middle–Upper Cenomanian limestones below the BL (U.A.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

17–19 of O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). During this study, G. biacuta was found in only one sample (BL 1/02) coming from the base of the BL. It is also reported from Middle–Upper Cenomanian sediments of the equatorial Atlantic (Erbacher, 1998). Material: Two specimens. Type species: Guttacapsa gutta (Squinabol, 1903b) Plate 3, Fig. 6 1903b. Cenellipsis biacutus n. sp. – Squinabol, p. 116, Pl. 8, Fig. 24. 1994. Guttacapsa gutta (Squinabol) – O’Dogherty, p. 227, Pl. 38, Figs. 1–6. 1998. Guttacapsa gutta (Squinabol) – Erbacher, p. 369, Pl. 1, Fig. 8. Occurrence: In the UMB, this species is known to occur in the Middle–Upper Cenomanian limestones below the BL (U.A. 17–19 of O’Dogherty, 1994). During this study, G. gutta was found in only one sample (BL 1/02) coming from the base of the BL. It is also reported from Upper Turonian to Santonian sediments of the equatorial Atlantic (Erbacher, 1998). Material: One specimen. Family EUCYRTIDIIDAE Ehrenberg, 1847 Genus Eostichomitra Empson-Morin, 1981 Type species: Eostichomitra warzigita Empson-Morin, 1981 Eostichomitra bonum (Kozlova) in Kozlova and Gorbovetz, 1966 Plate 4, Figs. 1 and 2 1986. Xitus sp. – Kuhnt et al., Pl. 7, Fig. y. 1994. Xitus (?) sp. EJ2 – Erbacher, p. 118, Pl. 19, Figs. 13 and 14. 1994. Xitus (?) bonarelli n. sp. – Marcucci et al., p. 30, Pl. 2, Fig. 3. 1994. Stichomitra sp. – Munasri and Bambang, TextFig. 7.11. 1994. Eostichomitra bonum (Kozlova) – O’Dogherty, p. 151, Pl. 18, Figs. 16–24 (and entire synonymy). 1998. Xitus (?) bonarelli – Salvini and Marcucci Passerini, Text-Fig. 10u. 2003. Eostichomitra bonum (Kozlova) – Yurtsever et al., Text-Fig. 7L. 2004. Eostichomitra bonum (Kozlova) – Scopelliti et al., Fig. 8.8. Occurrence: In the UMB, this species was known to occur in the Lower Turonian limestones overlying the BL (U.A. 20–21 of O’Dogherty, 1994). However, during this study, it also was found to occur in the upper part of the BL (sample BL 37/02), as well as in the overlying limestones. It is also reported from Lower Turonian levels of Turkey (Yurtsever et al., 2003) and Sicily (Scopelliti et al., 2004). Material: 15 specimens. Genus Phalangites O’Dogherty, 1994 Type species: Phalangites calamus O’Dogherty, 1994

271

Phalangites telum O’Dogherty, 1994 Plate 4, Figs. 3 and 4 1994. Phalangites telum nov. sp. – O’Dogherty, p. 157, Pl. 20, Figs. 16–23. 1996. Phalangites telum O’Dogherty – Gallicchio et al., Pl. 1, Fig. 13. 1998. Phalangites telum O’Dogherty – Salvini and Marcucci Passerini, Fig. 10h. Occurrence: Middle Albian to Lower Turonian of UMB (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). During this study, P. telum was only reported from the top of the BL. Material: Nine specimens. Genus Pseudoeucyrtis Pessagno, 1977a Type species: Eucyrtis (?) zhamoidai Foreman, 1973 Pseudoeucyrtis pulchra (Squinabol, 1904) Plate 4, Fig. 5 1904. Theosyringium pulchrum n. sp. – Squinabol, p. 222, Pl. 8, Fig. 7. 1994. Pseudoeucyrtis pulchra (Squinabol) – O’Dogherty, p. 184, Pl. 27, Figs. 9–13 (and entire synonymy). 1998. Pseudoeucyrtis pulchra (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 10j. Occurrence: In the UMB, this species is reported from the Upper Cenomanian to Lower Turonian interval (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). During this study, P. pulchra was found only in the lower part of the BL. Material: Two specimens. Pseudoeucyrtis sp. cf. P. spinosa (Squinabol, 1903b) Plate 4, Fig. 6 cf. 1903b. Eusyringium spinosum n. sp. – Squinabol, p. 141, Pl. 8, Fig. 42. cf. 1994. Pseudoeucyrtis spinosa (Squinabol) – O’Dogherty, p. 183, Pl. 27, Figs. 1–8 (and entire synonymy). cf. 1994. Eusyringium spinosum Squinabol – Erbacher, p. 99, Pl. 16, Figs. 4 and 5. cf. 1998. Pseudoeucyrtis spinosa (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 10k. Occurrence: In the UMB, this species is known to occur below the BL (U.A. 11–19 of O’Dogherty, 1994). The few specimens found at the base of the BL (sample BL 1/02) resemble to P. spinosa by the subspherical shape of the postabdominal segment and traces of spines on its surface. Doubtful identification is due to poor preservation. The species is also reported from Middle to Upper Albian sediments of the northern Atlantic (Erbacher, 1994). Material: Two specimens. Genus Stichomitra Cayeux, 1897 Type species: Stichomitra bertrandi Cayeux, 1897 Stichomitra communis Squinabol, 1903b Plate 4, Figs. 7 and 8

272

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Plate 4. Figs. 1 and 2. Eostichomitra bonum (Kozlova); 1. Sample BTT BL 37/02; 2. Sample BTT 564. Figs. 3 and 4. Phalangites telum O’Dogherty; 3. Sample BTT 572; 4. Sample BTT 564. Fig. 5. Pseudoeucyrtis pulchra (Squinabol); sample BTT BL 1/02. Fig. 6. Pseudoeucyrtis sp. cf. P. spinosa (Squinabol); sample BTT BL 1/02. Figs. 7 and 8. Stichomitra communis Squinabol; 7. Sample BTT BL 11/02; 8. Sample BTT BL 1/02. Figs. 9–12. Stichomitra stocki (Campbell and Clark); 9, 10. Sample BTT 28/02; 11. Sample BTT 23/02; 12. Sample BTT 1/02. Fig. 13. Stichomitra tosaensis Nakaseko and Nishimura; sample BTT BL 25/02. Figs. 14 and 15. Xitus mclaughlini Pessagno; 14. Sample BTT BL 1/02; 15. Sample BTT BL 15/02. Fig. 16. Xitus sp. cf. X. mclaughlini Pessagno; sample BTT BL 1/02. Figs. 17 and 18. Xitus spicularius (Aliev); 17. Sample BTT BL 6/02; 18. Sample BTT BL 1/02. Figs. 19–21. Xitus sp. A; sample BTT BL 1/02. Fig. 22. Xitus sp. B; sample BTT BL 1/02. Fig. 23. Torculum sp. cf. T. coronatum (Squinabol); sample BTT BL 1/02.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

1903b. Stichomitra communis n. sp. – Squinabol, p. 141, Pl. 8, Fig. 40. 1981. Stichomitra gr. asymbatos (Foreman) – De Wever and Thi´ebault p. 593, Pl. 1, Figs. 9 and 18. 1982. Stichomitra communis Squinabol – Taketani, p. 54, Pl. 3, Fig. 9; Pl. 11, Fig. 5. 1994. Stichomitra communis Squinabol – O’Dogherty, p. 144, Pl. 17, Figs. 6–16 (and entire synonymy). 1994. Stichomitra asymbatos Foreman – Pignotti, Pl. 2, Fig. 12. 1995. Stichomitra communis Squinabol – Bak, p. 20, TextFigs. 12b and 12c. 1998. Stichomitra communis Squinabol – Erbacher, p. 370, Pl. 1, Fig. 12. 1998. Stichomitra communis Squinabol – Salvini and Marcucci Passerini, Text-Fig. 8j. 1999. Stichomitra communis Squinabol – Premoli Silva et al., Pl. 4, Fig. 13. 2003. Stichomitra communis Squinabol – Yurtsever et al., Text-Fig. 7M. 2004. Stichomitra communis Squinabol – Bragina, p. S374, Pl. 9, Figs. 2 and 6; Pl. 32, Figs. 10–12; Pl. 33, Fig. 16. 2004. Stichomitra insignis (Squinabol) – Bragina, p. S375, Pl. 9, Figs. 3–5, 7. 2006. Stichomitra communis Squinabol – MusavuMoussavou and Danelian, p. 155, Pl. 32 Figs. 14–16. Occurrence: In the UMB, S. communis is known from the Middle Aptian to Lower Turonian (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998, this study). It is also reported from the Cenomanian to Lowermost Coniacian of Japan (Taketani, 1982), from the Upper Albian to Lower Turonian of the equatorial Atlantic (Erbacher, 1998; MusavuMoussavou and Danelian, 2006) and from the Cenomanian to Turonian of Turkey (Yurtsever et al., 2003; Bragina, 2004). Material: Approximately 100 specimens. Stichomitra stocki (Campbell and Clark, 1944) Plate 4, Figs. 9–12 1944. Stichocapsa (?) stocki n. sp. – Campbell and Clark, p. 44, Pl. 8, Figs. 31–33. 1986. Amphipyndax stocki (Campbell and Clark) – Kuhnt et al., Pl. 7, Fig. u. 1994. Stichomitra stocki (Campbell and Clark) – O’Dogherty, p. 146, Pl. 18, Figs. 10–15. 1998. Amphipyndax stocki (Campbell and Clark) – Vishnevskaya and De Wever, p. 255, Pl. 2, Fig. 21. 1998. Stichomitra stocki (Campbell and Clark) – Erbacher, p. 370, Pl. 1, Fig. 14 non Pl. 2, Fig. 1 (=S. mediocris). 2004. Amphipyndax stocki (Campbell and Clark) – Bragina, p. S375, Pl. 9, Fig. 11 (only); Pl. 32, Fig. 8. 2006. Stichomitra stocki (Campbell and Clark) – MusavuMoussavou and Danelian, p. 155, Figs. 11–13. Occurrence: This species is recorded from the Upper Cenomanian to Lower Turonian of the UMB (O’Dogherty, 1994; this study). It is also reported from the Uppermost Cenoma-

273

nian to lowermost Turonian of Morocco (Kuhnt et al., 1986), from the Albian to Turonian, Santonian of Russia (Vishnevskaya and De Wever, 1998); from the Upper Cenomanian of Demerara Rise, ODP leg 207 (Musavu-Moussavou and Danelian, 2006). Material: Five specimens. Stichomitra tosaensis Nakaseko and Nishimura in Nakaseko et al., 1979 Plate 4, Fig. 13 1979. Stichomitra tosaensis n. sp. – Nakaseko and Nishimura, p. 24, Pl. 7, Fig. 11. 1994. Stichomitra sp. EJ1 – Erbacher, p. 114, Pl. 15, Fig. 2; Pl. 19, Fig. 10. 1994. Stichomitra tosaensis Nakaseko and Nishimura – O’Dogherty, p. 146, Pl. 18, Figs. 1–8. Occurrence: In the UMB, this species is known to occur throughout the Lower Albian to Lower Turonian interval (Erbacher, 1994; O’Dogherty, 1994; this study). Material: Three specimens. Family NEOSCIADIOCAPSIDAE Pessagno, 1969 Genus Sciadiocapsa Squinabol, 1904 Type species: Sciadiocapsa euganea Squinabol, 1904 Sciadiocapsa sp. cf. S. monticelloensis (Pessagno, 1969) Plate 3, Fig. 7 cf. 1969. Microsciadocapsa monticelloensis n. sp. – Pessagno, p. 407, Pl. 32, Figs. 3–9; Pl. 34, Figs. 1 and 2. cf. 1994. Sciadiocapsa monticelloensis (Pessagno) – O’Dogherty, p. 230, Pl. 39, Figs. 9–12 (and entire synonymy). cf. 2004. Sciadiocapsa monticelloensis (Pessagno) – Scopelliti et al., Text-Fig. 8(12). Remarks: Doubtful identification is due to incomplete preservation of the proximal part of the test. Occurrence: In the UMB, this species occurs only in the Lower Turonian limestones overlying the BL (O’Dogherty, 1994). However, it is also reported from the Uppermost Cenomanian levels of Sicily (Scopelliti et al., 2004). Material: Two specimens. Family PSEUDODICTYOMITRIDAE Pessagno, 1977b Genus Pseudodictyomitra Pessagno, 1977b Type species: Pseudodictyomitra pentacolaensis Pessagno, 1977b Pseudodictyomitra pentacolaensis Pessagno, 1977b Plate 3, Fig. 8 1977b. Pseudodictyomitra pentacolaensis n. sp. – Pessagno, p. 50, Pl. 8, Figs. 3, 17, 23. 1994. Pseudodictyomitra pentacolaensis Pessagno – O’Dogherty, p. 104, Pl. 7, Figs. 29–32 (and entire synonymy). 1998. Pseudodictyomitra pentacolaensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 8g. Occurrence: In the UMB, this species is reported from Upper Aptian to Upper Cenomanian levels (U.A. 8–19 of O’Dogherty, 1994). It last occurs within the middle part of the BL (this study,

274

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

sample BL 17/02). It is also reported from the Upper Albian of California (Pessagno, 1977b). Material: Nine specimens. Pseudodictyomitra pseudomacrocephala (Squinabol, 1903b) Plate 3, Figs. 9 and 10 1903b. Dictyomitra pseudomacrocephala n. sp. – Squinabol, p. 139, Pl. 10, Fig. 2. 1975. Dictyomitra pseudomacrocephala Squinabol – Dumitrica, Text-Fig. 2.19. 1976. Dictyomitra (?) pseudomacrocephala Squinabol – Pessagno, p. 53, Pl. 3, Figs. 2 and 3. 1985. Pseudodictyomitra pseudomacrocephala – Sanfilippo and Riedel p. 608, Text-Figs. 10.1a–e. 1991. Pseudodictyomitra pseudomacrocephala (Squinabol) – Marcucci Passerini et al., Text-Fig. 3h. 1994. Pseudodictyomitra pseudomacrocephala (Squinabol) – O’Dogherty, p. 108, Pl. 8, Figs. 5–8 (and entire synonymy). 1994. Pseudodictyomitra pseudomacrocephala (Squinabol) – Pignotti, Pl. 1, Fig. 12. 1998. Pseudodictyomitra pseudomacrocephala (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 8h. 1999. Pseudodictyomitra pseudomacrocephala (Squinabol) – Bak, Pl. 1, Fig. 12. 2003. Pseudodictyomitra pseudomacrocephala (Squinabol) – Yurtsever et al., Text-Fig. 7N. 2004. Pseudodictyomitra pseudomacrocephala (Squinabol) – Scopelliti et al., Fig. 8(11). 2004. Pseudodictyomitra pseudomacrocephala (Squinabol) – Bragina, p. S367, Pl. 7, Fig. 4; Pl. 32, Figs. 9, 14–16. Occurrence: In the UMB, this species is known to occur in the Lower Albian to Lower Turonian levels, including the BL (Marcucci Passerini et al., 1991; O’Dogherty, 1994; this study). It is also reported from the Middle Albian to Upper Cenomanian of Poland (Bak, 1999), from the Middle Cenomanian to Lower Turonian of Turkey (Yurtsever et al., 2003; Bragina, 2004) and from the Upper Cenomanian to Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: More than 100 specimens. Pseudodictyomitra tiara (Holmes, 1900) Plate 3, Figs. 11 and 12 1900. Dictyomitra tiara sp. nov. – Holmes, p. 701, Pl. 38, Fig. 4. 1975. Dictyomitra tiara sp. Holmes – Dumitrica, TextFig. 2.9. 1986. Pseudodictyomitra nakasekoi (Taketani) – Kuhnt et al., Pl. 7, Fig. s. 1991. Pseudodictyomitra carpatica (Lozyniak) – Marcucci Passerini et al., Text-Fig. 3k. 1994. Pseudodictyomitra nakasekoi (Taketani) – Erbacher, p. 110, Pl. 15, Figs. 5 and 6. 1994. Pseudodictyomitra tiara (Holmes) – O’Dogherty, p. 109, Pl. 8, Figs. 9–11 (and entire synonymy). 1994. Pseudodictyomitra carpatica (Lozyniak) – Pignotti, Pl. 1, Fig. 18.

1996. Pseudodictyomitra tiara (Holmes) – Gallicchio et al., Pl. 1, Fig. 9. 1998. Pseudodictyomitra tiara (Holmes) – Salvini and Marcucci Passerini, Text-Fig. 6n. 1999. Pseudodictyomitra carpatica (Lozyniak) – Premoli Silva et al., Pl. 4, Fig. 9. 2003. Pseudodictyomitra tiara (Holmes) – Yurtsever et al., Text-Fig. 7O. 2004. Pseudodictyomitra nakasekoi (Taketani) – Bragina, p. S366, Pl. 7, Figs. 1–3. Occurrence: In the UMB, this species is recorded in Cenomanian strata (i.e., O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998; this study). It last occurs within the middle part of the BL (Salvini and Marcucci Passerini, 1998; this study, sample BL 16/02). It is also known from the Cenomanian of Turkey (Yurtsever et al., 2003; Bragina, 2004). Material: 56 specimens. Family SYRINGOCAPSIDAE Foreman, 1973 Genus Distylocapsa Squinabol, 1904 Type species: Distylocapsa nova Squinabol, 1904 Distylocapsa sp. cf. D. squama O’Dogherty, 1994 Plate 3, Fig. 13 1994. Distylocapsa squama nov. sp. – O’Dogherty, p. 189, Pl. 28, Figs. 16–21. 1998. Distylocapsa squama O’Dogherty – Salvini and Marcucci Passerini, Text-Fig. 10s. Occurrence: In the UMB, this species was known to occur in the Lower Turonian limestones overlying the BL (O’Dogherty, 1994). The single specimen found during this study comes from the middle–upper part of the BL (sample BL 29/02). It is doubtfully assigned to D. squama because of its relatively poor preservation. This species is also known to occur at the top of the BL of the Southern Alps (Salvini and Marcucci Passerini, 1998). Material: One specimen. Genus Dorypyle Squinabol, 1904 Type species: Dorypyle cretacea Squinabol, 1904 Dorypyle ovoidea (Squinabol, 1904) Plate 3, Fig. 14 1904. Lithomespilus ovoideus n. sp. – Squinabol, p. 198, Pl. 4, Fig. 8. 1994. Dorypyle ovoidea (Squinabol) – O’Dogherty, p. 205, Pl. 33, Figs. 1–7. Occurrence: In the UMB, D. ovoidea was known to last occur in the Upper Cenomanian limestones underlying the BL (O’Dogherty, 1994). In this study, the species was found in one sample (BL 1/02) coming from the base of the BL. Material: Three specimens. Genus Squinabollum Dumitrica, 1970 Type species: Clistophaena fossile Squinabol, 1903b

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Squinabollum fossile (Squinabol, 1903b) Plate 3, Figs. 15 and 16 1903b. Clistophaena fossilis n. sp. – Squinabol, p. 130, Pl. 10, Fig. 11. 1975. Squinabollum fossilis (Squinabol) – Dumitrica, TextFig. 2.29. 1994. Squinabollum fossile (Squinabol) – O’Dogherty, p. 203, Pl. 32, Figs. 4–10 (and entire synonymy). 1998. Squinabollum fossile (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 6s. 2004. Squinabollum fossile (Squinabol) – Bragina, p. S385, Pl. 12, Figs. 1–4. Occurrence: In the UMB, this species is recorded from Middle Albian to Lower Turonian strata (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998; this study). It is also reported from the Cenomanian of Romania (Dumitrica, 1975), the Upper Cenomanian of northern Turkey and the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: 48 specimens. Family ULTRANAPORIDAE Pessagno, 1977b Genus Ultranapora Pessagno, 1977b Type species: Ultranapora durhami Pessagno, 1977b Ultranapora dendroacanthos (Squinabol, 1903b) Plate 3, Fig. 17 1903b. Tripilidium dendroacanthos n. sp. – Squinabol, p. 126, Pl. 8, Fig. 32. 1977b. Ultranapora dumitricai n. sp. – Pessagno, p. 38, Pl. 5, Figs. 7, 16, 17, 21. 1994. Ultranapora dendroacanthos (Squinabol) – O’Dogherty, p. 243, Pl. 42, Figs. 10–12 (and entire synonymy). Occurrence: In the UMB, this species is known from Lower Turonian limestones overlying the BL (O’Dogherty, 1994; this study, sample BTT 565). However, it is also reported from the Upper Albian of California (Pessagno, 1977b). Material: Three specimens. Family XITIDAE Pessagno, 1977b Genus Xitus Pessagno, 1977b Type species: Xitus plenus Pessagno, 1977b Remarks: In the UMB, genus Xitus (sensu O’Dogherty, 1994) last occurs in the Upper Cenomanian, and more particularly within the BL (Erbacher and Thurow, 1997; this study). However, it is also reported from Lower Turonian strata of the Crimean Mountains (Bragina, 2004) and from Coniacian to Santonian levels of the Russian platform (Vishnevskaya and De Wever, 1998). Therefore, its last occurrence in the UMB is regarded as a local extinction. Xitus mclaughlini (Pessagno, 1977b) Plate 4, Figs. 14 and 15 1977b. Xitus mclaughlini n. sp. – Pessagno, p. 54, Pl. 9, Fig. 17.

275

1991. Novixitus mclaughlini Pessagno – Marcucci Passerini et al., Text-Figs. 3f and 3g. 1994. Xitus mclaughlini (Pessagno) – O’Dogherty, p. 130, Pl. 12, Figs. 14–21 (and entire synonymy). 1994. Novixitus weyli Schmidt-Effing – Erbacher, p. 104, Pl. 14, Figs. 7 and 8. 1995. Novixitus weyli Schmidt-Effing – Bak, p. 17, TextFig. 12m. 1995. Novixitus mclaughlini Pessagno – Bak, p. 17, TextFigs. 12n and 12r. 1996. Novixitus mclaughlini Pessagno – Gallicchio et al., Pl. 1, Fig. 9. non 1998. Novixitus mclaughlini Pessagno – Erbacher, p. 370, Pl. 2, Fig. 6 (=X. spicularius) 1998. Novixitus mclaughlini Pessagno – Salvini and Marcucci Passerini, p. 793, Text-Fig. 6–l. 1999. Xitus mclaughlini (Pessagno) – Bak, Pl. 1, Fig. 10. 2004. Novixitus weyli Schmidt-Effing – Bragina, p. S366, Pl. 6, Figs. 1, 5–8, 10, 11. Occurrence: In the UMB, this species is reported from Lower Albian to Upper Cenomanian levels (i.e., Marcucci Passerini et al., 1991; O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998; this study). It is also reported from the Lower Albian to Upper Cenomanian of Poland (Bak, 1999). Material: 48 specimens. Xitus sp. cf. X. mclaughlini (Pessagno, 1977b) Plate 4, Fig. 16 cf. 1977b. Novixitus mclaughlini – Pessagno, p. 54, Pl. 9, Fig. 17. cf. 1994. Xitus mclaughlini (Pessagno) – O’Dogherty, p. 130, Pl. 12, Figs. 14–21. cf. 1998. Novixitus mclaughlini Pessagno – Salvini and Marcucci Passerini, p. 793, Fig. 6-l. cf. 2004. Novixitus weyli Schmidt-Effing - Bragina, p. S366, Pl. 6, Figs. 1, 5–8, 10, 11. Remarks: The specimen illustrated here is doubtfully assigned to X. mclaughlini because of the rather subcylindrical shape and poorly developed tubercles on the distal part of its test. Material: One specimen. Xitus spicularius (Aliev, 1965) Plate 4, Figs. 17 and 18 1965. Dictyomitra spicularia Aliev – Aliev, p. 39, Pl. 6, Fig. 9. 1994. Xitus spicularius (Aliev) – O’Dogherty, p. 127, Pl. 11, Figs. 17–31. 1994. Xitus spicularius (Aliev) – Erbacher, p. 118, Pl. 3, Fig. 4; Pl. 15, Fig. 7. 1998. Xitus spicularius (Aliev) – Erbacher, p. 371, Pl. 1, Figs. 1 and 2. 1998. Novixitus mclaughlini Pessagno – Erbacher, p. 370, Pl. 2, Fig. 6. 1998. Xitus spicularius (Aliev) – Vishnevskaya and De Wever, p. 258, Pl. 1, Figs. 10, 14, 15.

276

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

2004. Xitus spicularius (Aliev) – Bragina, p. S362, Pl. 5, Figs. 1–6; Pl. 33, Figs. 19, 29, 22. Occurrence: In the UMB, this species is known from Lower Aptian to Upper Cenomanian levels (Erbacher, 1994; O’Dogherty, 1994). The present study allows specifying its last occurrence in the lower part of the BL. The species is also reported from the Upper Turonian to Santonian of the equatorial Atlantic (Erbacher, 1998), the Middle–Upper Cenomanian of northern Turkey and the Middle Cenomanian to Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: 12 specimens. Xitus sp. A Plate 4, Figs. 19–21 Description: Test elongated conical bearing an inner layer of small circular pores and an outer layer composed of small tubercles situated along circumferential ridges. The first ridge is more prominent and separates the test into a proximal and a distal part. Tubercles are interconnected by numerous bars. Material: Three specimens. Xitus sp. B Plate 4, Fig. 22 Description: Test elongated cylindrical, bearing an outer layer of three prominent ridges composed of circumferential rows of small tubercles. The first ridge is situated at the proximal part of the test, while the two others situated towards the base of the perforated distal part. Material: One specimen Genus Torculum O’Dogherty, 1994 Type species: Theoconus coronatus Squinabol, 1904 Torculum sp. cf. T. coronatum (Squinabol) Plate 4, Fig. 23 cf. 1904. Theoconus coronatus n. sp. – Squinabol, p. 220, Pl. 8, Fig. 3. cf. 1994. Torculum coronatum (Squinabol) – O’Dogherty, p. 133, Pl. 12, Figs. 27 and 28; Pl. 14, Figs. 1–29 (and entire synonymy). Remarks: This morphotype is questionably assigned to Torculum coronatum because of the poor preservation of its proximal part. Material: One specimen. Family WILLIRIEDELLIDAE Dumitrica, 1970 Genus Cryptamphorella Dumitrica, 1970 Type species: Hemicryptocapsa conara Foreman, 1968 Cryptamphorella conara (Foreman, 1968) Plate 3, Fig. 18 1968. Hemicryptocapsa conara – Foreman, p. 35, Pl. 4, Figs. 11a and 11b.

1970. Cryptamphorella conara (Foreman) – Dumitrica, p. 80, Pl. 11, Figs. 66a–c. 1994. Cryptamphorella conara (Foreman) – Erbacher, p. 97, Pl. 5, Fig. 7. 1994. Hemicryptocapsa conara Foreman – Gorican, p. 65, Pl. 14, Figs. 11, 12a and 12b. 1995. Cryptamphorella conara (Foreman) – Bak, p. 12, TextFig. 12d. 1998. Cryptamphorella conara (Foreman) – Salvini and Marcucci Passerini, Text-Fig. 7q. 1999. Cryptamphorella conara (Foreman) – Premoli Silva et al., Pl. 4, Fig. 3. 2004. Cryptamphorella conara (Foreman) – Bragina, p. S383, Pl. 12, Fig. 9. 2004. Cryptamphorella conara (Foreman) – Bragina, p. 157, Pl. 3, Fig. 1. Occurrence: In the UMB, this species is reported from Lower Albian levels (Erbacher, 1994) and from within the BL (up to its upper part; Salvini and Marcucci Passerini, 1998). During this study, it was found at the base of the BL and underlying limestones. It is also reported from Lower Maastrichtian levels of California (Foreman, 1968), from the Late Valanginian to Middle Albian of the Budva Zone (Gorican, 1994), from the Upper Cenomanian of northern Turkey and Lower Turonian of the Crimean Mountains (Bragina, 2004) and from the Upper Cenomanian of Demerara Rise, ODP Leg 207 (Musavu-Moussavou and Danelian, 2006). Material: 11 specimens. Genus Holocryptocanium Dumitrica, 1970 Type species: Holocryptocanium tuberculatum Dumitrica, 1970 Holocryptocanium barbui Dumitrica, 1970 Plate 3, Figs. 19 and 20 1970. Holocryptocanium barbui n. sp. – Dumitrica, p. 76, Pl. 17, Figs. 105–108b; Pl. 21, Fig. 136. 1975. Holocryptocanium barbui Dumitrica – Dumitrica, Text-Fig. 2.1. 1989. Holocryptocanium barbui Dumitrica – Tumanda, p. 37, Pl. 7, Figs. 20 and 21. 1993. Holocryptocanium barbui Dumitrica – Bak p. 197, Pl. 4, Fig. 1. 1994. Holocryptocanium barbui Dumitrica – Gorican, p. 72, Pl. 14, Figs. 10, 13, 14. 1994. Holocryptocanium barbui Dumitrica – Erbacher, p. 101, Pl. 5, Fig. 8; Pl. 13, Fig. 11. 1994. Holocryptocanium barbui Dumitrica – Pignotti, Pl. 2, Figs. 8 and 17. 1995. Holocryptocanium barbui Dumitrica – Bak, p. 16, Text-Figs. 12k-I. 1998. Holocryptocanium barbui Dumitrica – Salvini and Marcucci Passerini, Text-Fig. 8a. 1999. Holocryptocanium barbui Dumitrica – Bak, Pl. 1, Fig. 1.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

2001. Holocryptocanium barbui Dumitrica – Bak et al. TextFigs. 17H, I. 2004. Holocryptocanium barbui Dumitrica – Bragina, p. S376, Pl. 10, Fig. 12; Pl. 31, Figs. 1 and 2b. 2006. Holocryptocanium barbui Dumitrica – MusavuMoussavou and Danelian, 2006, p. 157, Pl. 3, Fig. 2. Occurrence: In the UMB, this species is known to occur throughout the Lower Cenomanian to Lower Turonian interval (Erbacher, 1994; Salvini and Marcucci Passerini, 1998). In this study, H. barbui was found only in the lower part of the BL. It is also known from the Cenomanian of Rumania (Dumitrica, 1970), from the Aptian to Upper Turonian of Poland (Bak, 1995, 1999), from the Middle Cenomanian to Lower Turonian of the Crimean Mountains (Bragina, 2004) and from the Upper Cenomanian of the equatorial Atlantic (Demerara Rise, ODP Leg 207, Musavu-Moussavou and Danelian, 2006). Material: 13 specimens. Holocryptocanium tuberculatum Dumitrica, 1970 Plate 3, Figs. 21 and 22 1970. Holocryptocanium tuberculatum n. sp. – Dumitrica, p. 75, Pl. 16, Figs. 102, 103a–c; Pl. 21, Figs. 138a and 138b. 1975. Holocryptocanium tuberculatum Dumitrica – Dumitrica, Text-Fig. 2.2. 1977b. Holocryptocanium astiensis n. sp. – Pessagno, p. 40, Pl. 6, Figs. 16, 21, 26. 1991. Holocryptocanium astiensis Pessagno – Marcucci Passerini et al., Text-Fig. 3m. 1994. Conosphaera tuberosa Tan Sin Hok – Erbacher, p. 95, Pl. 17, Fig. 9. 1995. Holocryptocanium tuberculatum Dumitrica – Bak, p. 17, Text-Figs. 12h and 12i. 1995. Hemicriptocapsa tuberosa Dumitrica – Bak, p. 16, Text-Fig. 12j. 1998. Holocryptocanium astiensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 6j. 1999. Holocryptocanium tuberculatum Dumitrica – Bak, Pl. 1, Fig. 5. Occurrence: In the UMB, this species is known from Upper Cenomanian levels (Marcucci Passerini et al., 1991; Salvini and Marcucci Passerini, 1998). During this study, it was found in the lower part of the BL and the underlying limestones. It is also reported from the Lower Cenomanian of California (Pessagno, 1977b) and from Albian to Lower Turonian strata of Poland (Bak, 1999). Material: Five specimens. Genus Hemicryptocapsa Tan, 1927, emend. Dumitrica, 1970 Type species: Hemicryptocapsa capita Tan, 1927 (subsequent designation by Campbell, 1954) Hemicryptocapsa polyhedra Dumitrica, 1970 Plate 3, Fig. 23 1970. Hemicryptocapsa polyhedra n. sp. – Dumitrica, p. 72, Pl. 14, Figs. 85a–c.

277

1994. Hemicryptocapsa polyhedra Dumitrica – Erbacher, p. 101, Pl. 17, Fig. 11. 1994. Hemicryptocapsa polyhedra Dumitrica – Gorican, p. 71, Pl. 14, Figs. 7 and 8. 1994. Hemicryptocapsa polyhedra Dumitrica – O’Dogherty, p. 215, Pl. 35, Figs. 26–30 (and entire synonymy). 1998. Hemicryptocapsa polyhedra Dumitrica – Salvini and Marcucci Passerini, 1998, Fig. 9v. Occurrence: In UMB, this species is reported from the upper part of the BL (Erbacher, 1994; Salvini and Marcucci Passerini, 1998) and the overlying limestones (Erbacher, 1994; O’Dogherty, 1994). During this study, it was found in the lower part of the BL (sample BL 10/02) and its overlying limestones (sample BTT 572). Material: Four specimens. Order SPUMELLARIA Ehrenberg, 1875 Family ANGULOBRACCHIIDAE Baumgartner, 1980 emend. De Wever et al., 2001 Genus Paronaella Pessagno, 1971a Type species: Paronaella solanoensis Pessagno, 1971a Paronaella solanoensis Pessagno, 1971a Plate 5, Figs. 1 and 2 1971a. Paronaella solanoensis n. sp. – Pessagno, p. 48, Pl. 10, Figs. 2 and 3. 1994. Paronaella solanoensis Pessagno – O’Dogherty, p. 354, Pl. 66, Figs. 19–24 (and entire synonymy). 1998. Paronaella solanoensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 10e. 2004. Paronaella solanoensis Pessagno – Bragina, p. S411, Pl. 39, Fig. 12. Occurrence: In the UMB, this species is known to occur from the Uppermost Cenomanian to the Lower Turonian (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). The presence of P. solanoensis in a middle Cenomanian sample (BG48) of this study extends its known age range in the UMB. This species is also reported from the Upper Turonian to Coniacian of California (Pessagno, 1971a), from the Middle–Upper Cenomanian of northern Turkey and from the Upper Cenomanian to Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: Nine specimens. Family ARCHAEOSPONGOPRUNIDAE Pessagno, 1973 Genus Archaeospongoprunum Pessagno, 1973 Type species: Archaeospongoprunum venadoensis Pessagno, 1973 Archaeospongoprunum cortinaensis Pessagno, 1973 Plate 5, Figs. 3–6 1973. Archaeospongoprunum cortinaensis n. sp. – Pessagno, p. 60, Pl. 9, Figs. 4–6. 1976. Archaeospongoprunum cortinaensis Pessagno – Pessagno, p. 33, Pl. 1, Fig. 3.

278

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Plate 5. Figs. 1 and 2. Paronaella solanoensis Pessagno; 1. Sample BTT 564; 2. Sample BG 48. Figs. 3–6. Archaeospongoprunum cortinaensis (Pessagno); 3. Sample BTT 564; 4. Sample BTT 572; 5. Sample BTT 564; 6. Sample BTT 572. Fig. 7. Archaeospongoprunum triplum (Pessagno); sample BTT 572. Fig. 8. Cavaspongia antelopensis (Pessagno); sample BTT 572. Fig. 9. Cavaspongia contracta O’Dogherty; sample BTT 572. Fig. 10. Cavaspongia euganea (Squinabol); sample BG 54. Fig. 11. Cavaspongia sphaerica O’Dogherty; sample BTT 572. Figs. 12 and 13. Praeconocaryomma lipmanae Pessagno; sample BTT 572. Fig. 14. Dactyliosphaera lepta (Foreman); sample BG 54. Fig. 15. Dactyliosphaera silviae; sample BTT BL 1/02. Fig. 16. Crucella irwini Pessagno; sample BG 54. Fig. 17. Crucella messinae Pessagno; sample BTT BL 35/02. Figs. 18 and 19. Crucella cachensis Pessagno; 18. Sample BTT 572; 19. Sample BTT BL 34/02. Figs. 20 and 21. “Cenosphaera” boria Pessagno; sample BTT BL 11/02.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

1994. Archaeospongoprunum cortinaensis Pessagno – Erbacher, p. 94, Pl. 12, Fig. 2. 1998. Archaeospongoprunum cortinaensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 9b. 2004. Archaeospongoprunum cortinaensis Pessagno – Bragina, p. S407, Pl. 18, Figs. 5, 10, 11, 13, 14. 2006. Archaeospongoprunum cortinaensis Pessagno – Musavu-Moussavou and Danelian, p. 159, Pl. 3, Figs. 11–15. Occurrence: In the UMB, A. cortinaensis is reported from Upper Albian to Lower Turonian levels (Erbacher, 1994). During this study, it was found to occur only in the limestones underlying and overlying the BL. This species is also known from the Lower Cenomanian to Lower Coniacian of California (Pessagno, 1973), from the Uppermost Cenomanian equivalent of the BL of Southern Alps (Salvini and Marcucci Passerini, 1998), from the Middle–Upper Cenomanian of northern Turkey (Bragina, 2004) and from the Lower Turonian of the equatorial Atlantic (Demerara Rise, ODP Leg 207, Musavu-Moussavou and Danelian, 2006). Material: Four specimens. Archaeospongoprunum triplum Pessagno, 1976 Plate 5, Fig. 7 1976. Archaeospongoprunum triplum n. sp. – Pessagno, p. 33, Pl. 6, Fig. 2. 1998. Archaeospongoprunum triplum Pessagno – Salvini and Marcucci Passerini, Text-Fig. 9C. 2004. Archaeospongoprunum triplum Pessagno – Bragina, p. S407, Pl. 35, Fig. 13. Occurrence: This species is reported from the Coniacian of California (Pessagno, 1976), from the Uppermost Cenomanian equivalent of the BL of Southern Alps (Salvini and Marcucci Passerini, 1998) and from the Lower Turonian of the Crimean Mountains (Bragina, 2004). As far as we know, it is the first time that it is reported here from the UMB. During this study, it was found to occur only in one sample (BTT 572) coming from the limestones overlying the BL (Lower Turonian). Material: Four specimens. Family CAVASPONGIIDAE Pessagno, 1973 Genus Cavaspongia Pessagno, 1973 Type species: Cavaspongia antelopensis Pessagno, 1973 Cavaspongia antelopensis Pessagno, 1973 Plate 5, Fig. 8 1973. Cavaspongia antelopensis n. sp. – Pessagno, p. 76, Pl. 18, Figs. 4 and 5; Pl. 19, Fig. 1. 1986. Cavaspongia californiaensis Pessagno – Kuhnt et al., Pl. 8, Fig. l. 1994. Cavaspongia californiaensis Pessagno – Marcucci et al., Pl. 1, Fig. 5. 1994. Cavaspongia antelopensis Pessagno – O’Dogherty, p. 313, Pl. 57, Figs. 17–23 (and entire synonymy). 1996. Cavaspongia antelopensis Pessagno – Gallicchio et al., Pl. 1, Fig. 16.

279

1998. Cavaspongia antelopensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 9g. 1998. Cavaspongia antelopensis Pessagno – Vishnevskaya and De Wever, p. 247, Pl. 3, Fig. 9. 2003. Cavaspongia antelopensis Pessagno – Yurtsever et al., Text-Fig. 6.L. 2004. Cavaspongia antelopensis Pessagno – Bragina, p. S421, Pl. 23, Figs. 9 and 11; Pl. 37, Fig. 7. Occurrence: In the UMB, the species is known to occur in the upper part of BL (Salvini and Marcucci Passerini, 1998) and in the overlying Lower Turonian limestones (O’Dogherty, 1994). During this study, C. antelopensis was found only in samples overlying the BL. However, it is also reported from Middle–Upper Cenomanian strata of northern Turkey and Lower Turonian levels of the Crimean Mountains (Bragina, 2004). Material: Three specimens. Cavaspongia contracta O’Dogherty, 1994 Plate 5, Fig. 9 1994. Cavaspongia contracta nov. sp. – O’Dogherty, p. 311, Pl. 57, Figs. 8–11. 2004. Cavaspongia contracta O’Dogherty – Bragina, p. S421, Pl. 40, Fig. 11. Occurrence: In the UMB, this species is known to occur throughout the Lower Cenomanian to Lower Turonian interval (O’Dogherty, 1994 and this study). C. contracta is also known from the Upper Cenomanian to Lower Turonian of the Crimean Mountains and from the Upper Cenomanian of northern Turkey (Bragina, 2004). Material: Two specimens. Cavaspongia euganea (Squinabol, 1904) Plate 5, Fig. 10 1904. Euchitonia euganea n. sp. – Squinabol, p. 204, Pl. 6, Fig. 1. 1976. Dumitrica maxwellensis n. sp. – Pessagno, p. 38, Pl. 4, Figs. 10 and 11. 1994. Dumitrica maxwellensis Pessagno – Erbacher, p. 98, Pl. 18, Fig. 6. 1994. Cavaspongia euganea (Squinabol) – O’Dogherty, p. 309, Pl. 56, Figs. 8–14 (and entire synonymy). 1998. Dumitrica maxwellensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 9r. 2004. Cavaspongia euganea (Squinabol) – Bragina, p. S421, Pl. 24, Figs. 11 and 12; Pl. 40, Figs. 1 and 8. Occurrence: In the UMB, C. euganea is reported from Middle Albian to Lower Turonian levels (Erbacher, 1994; O’Dogherty, 1994). During this study, it was found only in samples coming from limestones underlying the BL. The species is also known from the Middle–Upper Cenomanian of northern Turkey and from the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: 10 specimens. Cavaspongia sphaerica O’Dogherty, 1994 Plate 5, Fig. 11

280

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

1994. Cavaspongia sphaerica nov. sp. – O’Dogherty, p. 311, Pl. 57, Figs. 1–7. 1998. Cavaspongia sphaerica O’Dogherty – Erbacher, p. 369, Pl. 2, Fig. 23. 2003. Cavaspongia sphaerica O’Dogherty – Yurtsever et al., Text-Fig. 7.N. Occurrence: This species is reported from the Upper Albian to Lower Turonian interval of UMB (O’Dogherty, 1994). During this study, C. sphaerica was found in only one sample (BTT 572) coming from limestones overlying the BL. It is also reported from the Cenomanian to Lower Turonian of Turkey (Yurtsever et al., 2003). Material: One specimen. Family CONOCARYOMMIDAE Lipman, 1969 emend. De Wever et al., 2001 Genus Praeconocaryomma Pessagno, 1976 Type species: Praeconocaryomma universa Pessagno, 1976 Praeconocaryomma lipmanae Pessagno, 1976 Plate 5, Figs. 12 and 13? 1976. Preconocaryomma lipmanae n. sp. – Pessagno, p. 41, Pl. 4, Figs. 12 and 13. 1998. Preconocaryomma lipmanae Pessagno – Salvini and Marcucci Passerini, Text-Fig. 8c. Remarks: The specimen illustrated on Fig. 22 is questionably assigned to P. lipmanae because of its outline, which displays mamae without spines on the top. Occurrence: In the UMB, this species is known to occur within the BL (Salvini and Marcucci Passerini, 1998). During this study, P. lipmanae was found in the Lower Turonian limestones overlying the BL, extending thus its known age in this basin. It is also reported from Upper Cenomanian to Lower Turonian levels of California (Pessagno, 1976). Material: Six specimens. Family DACTYLIOSPHAERIDAE Squinabol, 1904 Genus Dactyliosphaera Squinabol, 1904 Type species: Dactyliosphaera silviae Squinabol, 1904 Dactyliosphaera lepta (Foreman, 1978) Plate 5, Fig. 14 1978. Amphibrachium leptum n. sp. – Foreman, p. 841, Pl. 1, Figs. 8 and 9. 1994.?Spongodruppa sp. EJ1 – Erbacher, p. 113, Pl. 13, Fig. 3. 1994. Dactyliosphaera lepta (Foreman) – O’Dogherty, p. 340, Pl. 63, Figs. 13–21 (and entire synonymy). 1998. Dactyliosphaera lepta (Foreman) – Erbacher, p. 369, Pl. 1, Fig. 28. 2006. Dactyliosphaera lepta (Foreman) – MusavuMoussavou and Danelian, p. 160, Pl. 4, Figs. 6 and 7. Occurrence: This species is reported from the Late Albian to Late Cenomanian interval of the UMB (O’Dogherty, 1994

and this study). It is also known from the Albian to Cenomanian of the southern Atlantic (Foreman, 1978), from the Late Albian to Late Cenomanian of the northern Atlantic (Erbacher, 1994) and from the Middle to Upper Cenomanian of the equatorial Atlantic (Erbacher, 1998; Musavu-Moussavou and Danelian, 2006). Material: Eight specimens. Dactyliosphaera silviae Squinabol, 1904 Plate 5, Fig. 15 1903b. Gen. and sp. nov. – Squinabol, p. 121, Pl. 9, Fig. 21. 1904. Dactyliosphaera silviae n. sp. – Squinabol, p. 196, Pl. 4, Fig. 3. 1975. Dactyliosphaera silviae Squinabol – Dumitrica, TextFig. 2.14. 1988. Pseudoaulophacus (?) sp. D – Thurow p. 404, Pl. 5, Fig. 14. 1994. Dactyliosphaera silviae Squinabol – O’Dogherty, p. 341, Pl. 63, Figs. 22–26 (and entire synonymy). 1996. Dactyliosphaera silviae Squinabol – Gallicchio et al., Pl. 1, Fig. 6. 1998. Dactyliosphaera silviae Squinabol – Salvini and Marcucci Passerini, Fig. 6d. 2004. Dactyliosphaera silviae Squinabol – Bragina, p. S429, Pl. 25, Figs. 5–8. 2006. Dactyliosphaera silviae Squinabol – MusavuMoussavou and Danelian, p. 160, Pl. 4, Figs. 1–3. Occurrence: In the UMB, this species is known from the Upper Cenomanian limestones underlying the BL (O’Dogherty, 1994) and from the lower part of the critical interval (Salvini and Marcucci Passerini, 1998; this study). D. silviae is also reported from the Cenomanian of Roumania (Dumitrica, 1975), from the Middle–Upper Cenomanian of northern Turkey (Bragina, 2004) and from the Upper Cenomanian of the equatorial Atlantic (Demerara Rise, ODP Leg 207, Musavu-Moussavou and Danelian, 2006). Material: Three specimens. Family HAGIASTRIDAE Riedel, 1971 Genus Crucella Pessagno, 1971a Type species Crucella messinae Pessagno, 1971a Crucella irwini Pessagno, 1971a Plate 5, Fig. 16 1971a. Crucella irwini n. sp. – Pessagno, p. 55, Pl. 9, Figs. 4–6. 1994. Crucella irwini Pessagno – O’Dogherty, p. 369, Pl. 71, Figs. 7–14 (and entire synonymy). 1994. Crucella irwini Pessagno – Urquhart, Text-Fig. 5.3. 1998. Crucella irwini Pessagno – Vishnevskaya and De Wever, p. 250, Pl. 3, Figs. 11 and 12. 2004. Crucella irwini Pessagno – Bragina, p. S417, Pl. 23, Figs. 4, 5, 7; Pl. 39, Figs 3 and 8. 2006. Crucella irwini Pessagno – Musavu-Moussavou and Danelian, p. 160, Pl. 4, Figs. 17 and 18?

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Occurrence: In the UMB, this species is known to occur throughout the Cenomanian to Lower Turonian (U.A. 16–21 of O’Dogherty, 1994). During this study, C. irwini was found in only one Middle Cenomanian sample (BG 54). It is also known from the Turonian to Lower Coniacian of California (Pessagno, 1971a), from the Turonian to Lower Santonian of the Russian platform (Vishnevskaya and De Wever, 1998), from the Middle to Upper Cenomanian of northern Turkey and from the Lower Turonian of the Crimean Mountains (Bragina, 2004) and finally from the Upper Cenomanian of the equatorial Atlantic (MusavuMoussavou and Danelian, 2006). Material: One specimen. Crucella messinae Pessagno, 1971a Plate 5, Fig. 17 1971a. Crucella messinae n. sp. – Pessagno, p. 56, Pl. 6, Figs. 1–3. 1994. Crucella messinae Pessagno – Erbacher, p. 96, Pl. 2, Fig. 10; Pl. 12, Fig. 3; Pl. 10, Fig. 15; Pl. 16, Fig. 12. 1994. Crucella messinae Pessagno – O’Dogherty, p. 368, Pl. 70, Figs. 21–24; Pl. 71, Figs. 1–6 (and entire synonymy). 1998. Crucella messinae Pessagno – Salvini and Marcucci Passerini, Fig. 7p. 2003. Crucella messinae Pessagno – Yurtsever et al., TextFig. 6G. 2004. Crucella messinae Pessagno – Bragina, p. S417, Pl. 23, Figs. 1 and 2; Pl. 38, Fig. 5. 2004. Crucella messinae Pessagno – Gorican and Smuc, Pl. 1, Fig. 11. 2006. Crucella messinae Pessagno – Musavu-Moussavou and Danelian, p. 160, Pl. 4, Figs. 20 and 21. Occurrence: In the UMB, this species is reported throughout the Middle Albian to Lower Turonian (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998; this study). It is also known from the Lower Cenomanian of California (Pessagno, 1971a), from the Middle–Upper Cenomanian of northern Turkey, from the Upper Cenomanian–Lower Turonian of the Crimean Mountains (Bragina, 2004) and from the Upper Cenomanian of the equatorial Atlantic (Musavu-Moussavou and Danelian, 2006). Material: 45 specimens. Crucella cachensis Pessagno, 1971a Plate 5, Figs. 18 and 19 1971a. Crucella cachensis n. sp. – Pessagno, p. 53, Pl. 9, Figs. 1–3. 1976. Crucella cachensis Pessagno – Pessagno, p. 31, Pl. 3, Figs. 14 and 15. 1991. Crucella cachensis Pessagno – Marcucci Passerini et al., Text-Figs. 4j–l. 1994. Crucella cachensis Pessagno – Erbacher, p. 95, Pl. 18, Fig. 4. 1994. Crucella cachensis tolfaensis Marcucci and Gardin – Marcucci Passerini et al., Pl. 1, Fig. 1. 1994. Crucella cachensis Pessagno – O’Dogherty, p. 370, Pl. 71, Figs. 15–22 (and entire synonymy).

281

1994. Crucella cachensis cachensis Pessagno – Pignotti, Pl. 1, Fig. 4. 1994. Crucella cachensis tolfaensis Marcucci and Gardin – Pignotti, Pl. 1, Fig. 5; Pl. 2, Fig. 1; Pl. 3, Figs. 6 and 7. 1994. Crucella cachensis Pessagno – Urquhart Fig.-text. 5.1. 1996. Crucella cachensis Pessagno – Gallicchio et al., Pl. 1, Fig. 14. 1998. Crucella cachensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 9k. 2003. Crucella cachensis Pessagno – Yurtsever et al., TextFigs. 7D and 7E. 2004. Crucella cachensis Pessagno – Scopelliti et al., Fig. 8(6). 2004. Crucella cachensis Pessagno – Bragina, p. S445, Pl. 22, Fig. 11; Pl. 38, Figs. 8, 10, 11; Pl. 39, Figs. 5, 6, 9. Occurrence: In the UMB, this species is known from the middle part of the BL (Uppermost Cenomanian) and the overlying Lower Turonian limestones (Marcucci Passerini et al., 1991; Erbacher, 1994; O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998; this study). It is also known from the Turonian of California (Pessagno, 1971a), from the Upper Cenomanian to Lower Turonian of the Crimean Mountains and the Upper Cenomanian of northern Turkey (Bragina, 2004). Material: 12 specimens. Family PARVIVACCIDAE Pessagno, Six and Yang, 1989 emend. De Wever et al., 2001 Genus Acaeniotyle Foreman, 1973 Type species: Xiphosphaera umbilicata R¨ust, 1898 Acaeniotyle rebellis O’Dogherty, 1994 Plate 6, Figs. 1 and 2 1994. Acaeniotyle rebellis nov. sp. – O’Dogherty, p. 287, Pl. 51, Figs. 5–10. Occurrence: This species is known to occur throughout the Upper Albian to Lower Turonian of the UMB (O’Dogherty, 1994; this study). Material: Eight specimens. Acaeniotyle sp. cf. A. umbilicata (R¨ust, 1898) Plate 6, Fig. 3 cf. 1898. Xiphospaera umbilicata n. sp. – R¨ust, p. 7, Pl. 1, Fig. 9. cf. 1981. Acaeniotyle umbilicata (R¨ust) – Schaaf, p. 431, p. 6, Fig. 11; Pl. 15, Figs. 3a and 3b. cf. 1994. Acaeniotyle umbilicata (R¨ust) – O’Dogherty, p. 289, Pl. 51, Figs. 19 and 20. cf. 1994. Acaeniotyle umbilicata (R¨ust) – Erbacher, p. 89, Pl. 1, Fig. 2. cf. 2004. Acaeniotyle umbilicata (R¨ust) – Bragina, p. S401, Pl. 17, Figs. 3 and 7; Pl. 41, Fig. 8. Occurrence: In the UMB, this species is reported throughout the Upper Barremian to Lower Albian (Erbacher, 1994; O’Dogherty, 1994). The probable presence of A. umbilicata in a sample coming from the base of the BL may extend its known age range in the UMB to the uppermost Cenomanian. The species

282

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Plate 6. Figs. 1 and 2. Acaeniotyle rebellis O’Dogherty; 1. Sample BTT 572; 2. Sample BTT BL 1/02. Fig. 3. Acaeniotyle sp. cf. A. umbilicata (R¨ust); sample BTT BL 1/02. Fig. 4. Acaeniotyle vitalis O’Dogherty; sample BTT 572. Fig. 5. Halesium sexangulum Pessagno; sample BTT 564. Figs. 6 and 7. Pessagnobrachia fabianii (Squinabol); 6. Sample BTT 572; 7. Sample BG 48. Fig. 8. Pessagnobrachia irregularis (Squinabol); sample BG 48. Figs. 9 and 10. Alievium superbum Pessagno; 9. Sample BTT 567B; 10. Sample BTT BL 31/02. Fig. 11. Becus regius; Sample BTT BL 6/02. Fig. 12. Dactyliodiscus longispinus (Squinabol); sample BG 54. Fig. 13. Dactyliodiscus spinosus Bragina; sample BTT 564. Fig. 14. Pseudoaulophacus putahensis (Pessagno); sample BTT 564. Fig. 15. Patellula cognata O’Dogherty; sample BG 54. Figs. 16 and 17. Patellula ecliptica O’Dogherty; 16. Sample BTT 566B; 17. Sample BTT 572. Fig. 18. Patellula helios (Squinabol); sample BG 54. Fig. 19. Staurosphaeretta longispina (Squinabol); sample BG 54. Figs. 20 and 21. Triactoma hexeris O’Dogherty; 20. Sample BTT BL 38/02; 21. Sample BTT 572.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

is also known from the Middle to Upper Aptian of the northern Atlantic (Erbacher, 1994), from the Middle–Upper Cenomanian of northern Turkey and from the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: Four specimens. Acaeniotyle vitalis O’Dogherty, 1994 Plate 6, Fig. 4 1994. Acaeniotyle vitalis nov. sp. – O’Dogherty, p. 287, Pl. 51, Figs. 1–4. Occurrence: Middle Albian to Lower Turonian of the UMB (O’Dogherty, 1994 and this study). Material: Five specimens. Family PATULIBRACCHIIDAE Pessagno, 1971a emend. De Wever et al., 2001 Genus Halesium Pessagno, 1971a emend. Baumgartner, 1980 Halesium sexangulum Pessagno, 1971a Type species: Halesium sexangulum Pessagno, 1971a Halesium sexangulum Plate 6, Fig. 5 1971a. Halesium sexangulum n. sp. – Pessagno, p. 25, Pl. 1, Figs. 5 and 6; Pl. 2, Figs. 1–6. 1994. Halesium amissum (Squinabol) – O’Dogherty, p. 351, Pl. 65, Figs. 15–23 (and entire synonymy). 1998. Halesium sexangulum Pessagno – Salvini and Marcucci Passerini, Text-Fig. 7s. 2004. Halesium sexangulum Pessagno – Bragina, p. S412, Pl. 39, Figs. 7 and 10. Occurrence: In the UMB, this species is known to occur throughout the Middle Cenomanian to Lower Turonian (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). In this study, the species H. sexangulum was found in only one sample (BTT 572) coming from limestones overlying the BL. It is also known from the Lower Cenomanian to Middle Turonian of California (Pessagno, 1971a), from the Upper Cenomanian to Lower Turonian of the Crimean Mountains and from the Middle–Upper Cenomanian of northern Turkey (Bragina, 2004). Material: 15 specimens. Genus Pessagnobrachia Kozur and Mostler, 1978 Type species: Patulibracchium testlaensis Pessagno, 1971a Pessagnobrachia fabianii (Squinabol, 1914) Plate 6, Figs. 6 and 7 1914. Rhopalastrum Fabianii n. f. – Squinabol, p. 274, Pl. 21[2], Fig. 4. 1994. Pessagnobrachia fabianii (Squinabol) – O’Dogherty, p. 359, Pl. 67, Figs. 17–25 (and entire synonymy). 2004. Pessagnobrachia fabianii (Squinabol) – Bragina, p. S419, Pl. 21, Figs. 1, 2, 4, 7. Occurrence: Middle Albian to Lower Turonian of the UMB (O’Dogherty, 1994; this study); Middle–Upper Cenomanian of northern Turkey (Bragina, 2004).

283

Material: Five specimens. Pessagnobrachia irregularis (Squinabol, 1903b) Plate 6, Fig. 8 1903b. Rhopalastrum irregulare n. sp. – Squinabol, p. 122, Pl. 9, Fig. 10. 1994. Pessagnobrachia irregularis (Squinabol) – O’Dogherty, p. 360, Pl. 68, Figs. 1–8 (and entire synonymy). 1994. Patulibracchium davisi Pessagno – Erbacher, p. 107, Pl. 11, Fig. 1; Pl. 12, Fig. 10; Pl. 16, Fig. 10. Occurrence: Middle Albian to Middle Cenomanian of the UMB (O’Dogherty, 1994; Erbacher, 1994). During this study, it was found at the base of the BL (samples BL 01/02 and 02/02). It is also reported from the lowermost Turonian limestones overlying the BL equivalent in Northern Italy (Erbacher, 1994). Material: Six specimens. Family PSEUDOAULOPHACIDAE Riedel, 1967 emend. Dumitrica, 1997 Subfamily PSEUDOAULOPHACINAE Riedel, 1967 emend. De Wever et al., 2001 Genus Alievium Pessagno, 1972 Type species: Theodiscus superbus Squinabol, 1914 Alievium superbum (Squinabol, 1914) Plate 6, Figs. 9 and 10 1914. Theodiscus superbus n. f. – Squinabol, p. 271, Pl. 20(1), Fig. 4. 1976. Alievium superbum (Squinabol) – Pessagno, p. 27, Pl. 3, Fig. 12. 1991. Alievium superbum (Squinabol) – Marcucci Passerini et al., Text-Figs. 4g and 4h. 1994. Alievium superbum (Squinabol) – O’Dogherty, p. 322, Pl. 59, Figs. 14–18 (and entire synonymy). 1996. Alievium superbum (Squinabol) – Gallicchio et al., Pl. 1, Fig. 12. 1998. Alievium superbum (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 8s. 2003. Alievium superbum (Squinabol) – Yurtsever et al., TextFigs. 7A and B. 2004. Alievium superbum (Squinabol) – Bragina, p. S427, Pl. 36, Fig. 1. Occurrence: In the UMB, A. superbum is reported from the middle part of the BL and the overlying Lower Turonian limestones (Marcucci Passerini et al., 1991; O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998). The species is also known from the Lower Turonian to Lower Coniacian of California (Pessagno, 1976), from the Lower Turonian of Turkey (Yurtsever et al., 2003) and from the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: 16 specimens. Genus Becus Wu, 1986 Type species: Becus gemmatus Wu, 1986 Becus regius O’Dogherty, 1994 Plate 6, Fig. 11

284

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

1994. Becus regius nov. sp. – O’Dogherty, p. 318, Pl. 58, Figs. 18–26. 2004. Becus regius O’Dogherty – Bragina, p. S439, Pl. 24, Figs. 1 and 10. Occurrence: In the UMB, this species is known to occur from Middle Albian to Upper Cenomanian strata underlying the BL (U.A. 12–19 of O’Dogherty, 1994). During this study B. regius was found to occur in the lower part of the BL. This species is also known to occur in the Upper Cenomanian of northern Turkey and the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: Two specimens. Genus Dactyliodiscus Squinabol, 1903b Type species: Dactyliodiscus cayeuxi Squinabol, 1903b Dactyliodiscus longispinus (Squinabol, 1904) Plate 6, Fig. 12 1904. Spongolonche diversispina n. sp. – Squinabol, p. 206, Pl. 6, Fig. 6. 1904. Stylotrochus euganeus n. sp. – Squinabol, p. 207, Pl. 6, Fig. 8. 1904. Stylotrochus euganeus n. sp. – Squinabol, p. 207, Pl. 6, Fig. 9. 1994. Dactyliodiscus longispinus (Squinabol) – O’Dogherty, p. 333, Pl. 62, Figs. 6–11. Occurrence: Upper Albian to Middle Cenomanian of the UMB (O’Dogherty, 1994). The presence of D. longispinus in limestones underlying the BL extends its known age range to the Uppermost Cenomanian. Material: Five specimens. Dactilyodiscus spinosus Bragina, 2004 Plate 6, Fig. 13 2004. Dactilyodiscus spinosus n. sp. – Bragina, p. S431, Pl. 25, Fig. 9. Occurrence: During this study, D. spinosus was found in only one sample (BTT 564) coming from limestones overlying the BL. To our knowledge, this is the first that this species is reported from the UMB. It is also known from Upper Cenomanian strata of northern Turkey (Bragina, 2004). Material: One specimen. Genus Pseudoaulophacus Pessagno, 1963 Type species: Pseudoaulophacus floresensis Pessagno, 1963 Pseudoaulophacus putahensis Pessagno, 1972 Plate 6, Fig. 14 1972. Pseudoaulophacus putahensis n. sp. – Pessagno, p. 310, Pl. 27, Fig. 1. 1994. Pseudoaulophacus putahensis Pessagno – Erbacher, p. 108, Pl. 18, Fig. 7. 1994. Pseudoaulophacus sp. cf. putahensis Pessagno – Marcucci et al., Pl. 2, Fig. 12.

1994. Pseudoaulophacus putahensis Pessagno – O’Dogherty, p. 320, Pl. 59, Figs. 5–13 (and entire synonymy). 1998. Pseudoaulophacus putahensis Pessagno – Salvini and Marcucci Passerini, Text-Fig. 8e. 2003. Pseudoaulophacus putahensis Pessagno – Yurtsever et al., Text-Fig. 7.G. 2004. Pseudoaulophacus putahensis Pessagno – Bragina, p. S425, Pl. 36, Fig. 3. Occurrence: In the UMB, this species is reported from Middle Albian to Lower Turonian levels (Erbacher, 1994; O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998; this study). P. putahensis is also reported from the Cenomanian to Turonian of Turkey (Yurtsever et al., 2003) and from Lower Turonian strata of the Crimean Mountains (Bragina, 2004). Material: Nine specimens. Family SPONGURIDAE Haeckel, 1862 Genus Patellula Petrushevskaya and Kozlova, 1972 Type species: Stylospongia planoconvexa Pessagno, 1963 Patellula cognata O’Dogherty, 1994 Plate 6, Fig. 15 1994. Patellula cognata n. sp. – O’Dogherty, p. 326, Pl. 60, Figs. 6–12. Occurrence: Lower to Middle Cenomanian of the UMB (O’Dogherty, 1994; this study). Material: One specimen. Patellula ecliptica O’Dogherty, 1994 Plate 6, Figs. 16 and 17 1994. Patellula ecliptica nov. sp. – O’Dogherty, p. 329, Pl. 61, Figs. 1–5. Occurrence: Lower Turonian of the UMB (O’Dogherty, 1994). The presence of this species within the lower part of the BL (Uppermost Cenomanian) extends its known age. Material: 12 specimens. Patellula helios (Squinabol, 1903b) Plate 6, Fig. 18 1903b. Stylotrochus helios n. sp. – Squinabol, p. 124, Pl. 10, Figs. 23 and 23a. 1982. Pseudoaulophacus lenticulatus (White) – Taketani, p. 51, Pl. 10, Fig. 11. 1991. Pseudoaulophacus lenticulatus (White) – Marcucci Passerini et al., Text-Figs. 4a, b, d. 1994. Patellula helios (Squinabol) – O’Dogherty, p. 327, Pl. 60, Figs. 19–24 (and entire synonymy). Occurrence: Lower Cenomanian to Lower Turonian of the UMB (O’Dogherty, 1994; this study). Material: Two specimens. Family XIPHOSTYLIDAE Haeckel, 1881 Genus Cenosphaera Ehrenberg, 1875 Type species: Cenosphaera plutonis Eherenberg

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

“Cenosphaera” boria Pessagno, 1977b Plate 5, Figs. 20 and 21 1977b. “Cenosphaera” boria n sp. – Pessagno, p. 36, Pl. 3, Figs. 13 and 19. 1998. Archaeocenosphaera euganea (Squinabol) – Salvini and Marcucci Passerini, Text-Fig. 7-n. 2004. “Cenosphaera” boria Pessagno – Bragina, p. S391, Pl. 14, Fig. 4; Pl. 36, Fig. 37. Occurrence: During this study, “C.” boria was found only within the lower part of the BL. “C.” boria is also reported from Berriasian to Valanginian strata of California (Pessagno, 1977b), from the Upper Cenomanian of northern Turkey and from the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: Seven specimens. Genus Staurosphaeretta Squinabol, 1904 Type species: Staurosphaera hindei Squinabol, 1904 Staurosphaeretta longispina (Squinabol, 1903b) Plate 6, Fig. 19 1903b. Staurosphaera longispina n. sp. – Squinabol, p. 112, Pl. 9, Fig. 1. 1904. Staurosphaera hindei n. sp. – Squinabol, p. 191, Pl. 3, Fig. 3. 1994. Staurosphaeretta longispina (Squinabol) – O’Dogherty, p. 292, Pl. 52, Figs. 6–10. 2004. Staurosphaeretta longispina (Squinabol) – Bragina, p. S396, Pl. 16, Figs. 2, 4, 5; Pl. 37, Fig. 14; Pl. 38, Fig. 2. Occurrence: In the UMB, this species is reported from Upper Aptian to Upper Cenomanian strata underlying the BL (U.A. 7–18 of O’Dogherty, 1994). During this study the species was found in only one sample (BG 54, Middle Cenomanian). S. longispina is also reported from the Middle to Upper Cenomanian of northern Turkey and the Lower Turonian of the Crimean Mountains (Bragina, 2004). Material: Five specimens. Genus Triactoma R¨ust, 1885 emend. Pessagno and Yang in Pessagno et al., 1989 Type species: Triactoma tithonianum R¨ust, 1885 Triactoma hexeris O’Dogherty, 1994 Plate 6, Figs. 20 and 21 1994. Triactoma cf. aff. T. echioides Foreman – Marcucci Passerini et al. Pl. 1, Fig. 12. 1994. Triactoma hexeris nov. sp. – O’Dogherty, p. 303, Pl. 55, Figs. 24–27. 1998. Triactoma hexeris O’Dogherty – Salvini and Marcucci Passerini, Text-Fig. 10q. 2003. Triactoma hexeris O’Dogherty – Yurtsever et al., TextFig. 6B. Occurrence: In the UMB, this species is known to occur throughout the Lower Cenomanian to Lower Turonian interval (O’Dogherty, 1994; Salvini and Marcucci Passerini, 1998; this study). It is also known from Cenomanian to Turonian strata of Turkey (Yurtsever et al., 2003). Material: 13 specimens.

285

Acknowledgements Constructive remarks by P. Dumitrica and L. O’Dogherty improved the initial version of the manuscript. C. Abrial and A. Lethiers helped with drawing and plate preparation. This is publication no. 18 of the Centro di Geobiologia of the University of Urbino. References Aliev, K.S., 1965. Radiolarians of the Lower Cretaceous deposits of northeastern Azerbaidzhan and their stratigraphic significance. Izdatel’stvo akademii Nauk, Azerbaidzhanskoi SSR, Baku, p. 124. Arthur, M.A., Premoli Silva, I., 1982. Development of widespread organic carbon rich strata in the Mediterranean Tethys. In: Schlanger, S.O., Cita, M.B. (Eds.), Nature and Origin of Cretaceous Carbon-Rich Facies. Academic Press, London, pp. 7–54. Baccelle, L., Bosellini, A., 1965. Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie. Annali dell’Universit`a di Ferrara (Nuovo Serie). Sezione IX, Scienze Geologiche e Paleontologiche 1, 117–153. Bak, K., Bak, M., Paul, Z., 2001. Barnasiowka radiolarian shale formation—a new lithostratigraphic unit in the Upper Cenomanian–Lowermost Turonian of the Polish outer Carpathians (Silesian series). Annales Societatis Geologorum Poloniae 71, 75–103. Bak, M., 1993. Late Albian–Early Cenomanian Radiolaria from the Czorstyn succession, Pienny Klippen belt, Carpathians. Studia Geologica Polonica 102, 177–207. Bak, M., 1995. Mid Cretaceous Radiolaria from the Pienny Klippen Belt, Carpathians, Poland. Cretaceous Research 16, 1–23. Bak, M., 1999. Cretaceous radiolarian zonation in the Polish part of the Pienny Klippen belt (Western Carpathians). Geologica Carpathica 50, 21–31. Baumgartner, P., 1980. Late Jurassic Hagiastridae and Patulibracchiidae (Radiolaria) from the Argolis Peninsula (Peloponnesus, Greece). Micropaleontology 26, 274–322. Baumgartner, P.O., Bjorklund, K.R., Caulet, J.P., De Wever, P., Kelogg, D., Labracherie, M., Nakaseko, K., Nishimura, A., Schaaf, A., Schmidt-Effing, R., Yao, A., 1981. Second European meeting of radiolarian paleontologists: current research on Cenozoic and Mesozoic radiolarians. Eclogae Geologicae Helvetiae 74, 1027–1061. Bragina, L.G., 2004. Cenomanian–Turonian radiolarians of Northern Turkey and Crimean Mountains. Paleontological Journal supplement 38, S325–S456. Campbell, A.S., 1954. Radiolaria. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology, Part D, Protista 3. Geological Society of America and University of Kansas Press, Lawrence/Kansas, pp. 11–195. Campbell, A.S., Clark, B.L., 1944. Radiolaria from upper Cretaceous of middle California. Geological Society of America Special Papers 57, 1–61. Caron, M., Robaszynski, F., Amedo, F., Baudin, F., Deconinck, J.-F., Hochuli, P., Von Salis-Perch, Nielsen, Tribovillard, N., 1999. Estimation de la dur´ee de l’´ev´enement anoxique global au passage C´enomanien/Turonien. Approche cyclostratigraphique dans la formation Bahloul en Tunisie centrale. Bulletin de la Soci´et´e G´eologique de France 2, 145–160. Cayeux, L., 1897. Contribution a` l’´etude micrographique des terrains ´ s´edimentaires. 1. Etude de quelques d´epˆots siliceux secondaires et tertiaires du Bassin de Paris et de la Belgique. 2. Craie du Bassin de Paris. M´emoires de la Soci´et´e g´eologique du Nord 4 (2), 1–591. Coccioni, R., Erba, E., Premoli Silva, I., 1991. Litho- and biostratigraphy of the Livello Bonarelli close to the Cenomanian/Turonian boundary (Umbria-Marche Apennines, Italy) and possible paleoceanographic ´ enements de la Limite significance. Colloque International sur les Ev` C´enomanien/Turonien, Grenoble, 24–26 Mai 1991. G´eologie Alpine, M´emoire H.S. 17, 25–26. Coccioni, R., Erba, E., Premoli Silva, I., 1992. Barremian–Aptian calcareous plankton biostratigraphy from the Gorgo a Cerbara section (Marche, central Italy) and implications for plankton evolution. Cretaceous Research 13, 517–537.

286

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287

Coccioni, R., Luciani, V., 2004. Planktonic foraminifera and environmental changes across the Bonarelli event (OAE2, latest Cenomanian) in its type area: A high-resolution study from the Tethyan reference Bottaccione section (Gubbio, central Italy). Journal of Foraminiferal Research 3, 109–129. Deflandre, G., 1953. Radiolaires fossiles. In: Grass´e, P.P. (Ed.), Traite de Zoologie 1 (2). Masson, Paris, pp. 389–436. De Wever, P., 1982. Radiolaires du Trias et du Lias de la T´ethys (syst´ematique stratigraphie). Soci´et´e G´eologique du Nord 7, 1–600. De Wever, P., Dumitrica, P., Caulet, J.P., Nigrini, C., Caridroit, M., 2001. Radiolarians in the Sedimentary Record. Gordon and Breach Science Publishers, pp. 1–533. De Wever, P., Thi´ebault, F., 1981. Les radiolaires d’ˆage Jurassique sup´erieur a` Cr´etac´e sup´erieur dans les radiolarites du Pinde–Olonos (presqu’ˆıle de Koroni ; P´eloponn`ese m´eridional, Gr`ece). Geobios 14, 577–609. Dumitrica, P., 1970. Cryptocephalic and cryptothoracic Nassellaria in some Mesozoic deposits of Romania. Revue roumaine de G´eologie. G´eophysique et G´eographie 14, 45–124. Dumitrica, P., 1975. Cenomanian radiolaria at Podul Dˆımbovitei. Micropaleontological guide to the Mesozoic and Tertiary of the Romanian Carpathians. In: 14th European Micropaleontological Colloquium: Institute of Geology and Geophysics, Bucharest, pp. 87–89. Ehrenberg, C.G., 1847. Ueber die mikroskopischen Kieselschaligen Polycystien als machtige Gebirgsmasse von Barbados und u¨ ber das Verh¨altniss der aus mehr als 300 neuen Arten bestehenden ganz eigenth¨umlichen Formengruppe jener Felsmasse zu den jetzt lebenden Thieren und zur kreidebildung Eine neue Anregung zur Erforscung des Erdlebens. K¨oniglische Preussische Akademie der Wissenschaften zu Berlin, Bericht, 40–60. Ehrenberg, C.G., 1875. Fortsetzung der mikrogeologischen Studien als Gesammt-Uebersichtder mikrokopischen Pal¨aontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rucksicht auf den Polycystinen-Mergel von Barbados. K¨onigliche Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre 1875, 1–225. Empson-Morin, K.M., 1981. Campanian Radiolaria from DSDP Site 313, MidPacific Mountains. Micropaleontology 27, 249–292. Erbacher, J., 1994. Entwicklung und Pal¨aoozeoanographie mittelkretazischer Radiolarien der westlichen Tethys (Italien) und des Nordatlantiks. T¨ubinger Mikropal¨aontologische Mitteilungen, Institut und Museum f¨ur Geologie und Pal¨aontologie der Universit¨at T¨ubingen 12, 1–120. Erbacher, J., 1998. Mid-Cretaceous radiolarians from the Eastern equatorial Atlantic and their paleoceanography. In: Mascle, J., Lohmann, G.P., Moullade, M. (Eds.), Proccedings of the Ocean Drilling Program, Scientific Results 159, pp. 363–373. Erbacher, J., Thurow, J., 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and west Tethys. Marine Micropaleontology 30, 139–158. Erbacher, J., Thurow, J., 1998. Mid-Cretaceous radiolarian zonation for the North Atlantic: an example of oceanographically controlled evolutionary processes in the marine biosphere? In: Cramp, A., Macleod, C.J., Lee, S.V., Jones, E.J.W. (Eds.), Geological Evolution of Ocean Basins Results from Ocean Drilling Program, 131. Geological Society, London Special Publications, pp. 71–82. Espitali´e, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Revue de l’Institut Franc¸ais du P´etrole 40, 563–579. Foreman, H.P., 1968. Upper Maastrichtian Radiolaria of California. The palaeontological association. Special Papers in Palaeontology 3, 1–82. Foreman, H.P., 1973. Radiolaria from DSDP Leg 20. In: Heezen, B.C., MacGregor, J.D., et al. (Eds.), Initial Reports of the Deep Sea Drilling Project 20. US Government Printing Office, Washington, pp. 249–305. Foreman, H.P., 1975. Radiolaria from the North Pacific, Deep Sea Drilling Project, Leg 32. In: Larson, R.L., Moberdy, R., et al. (Eds.), Initial Reports of the Deep Sea Drilling Project 32. US Government Printing Office, Washington, pp. 579–676. Foreman, H.P., 1978. Cretaceous Radiolaria in the Eastern South Atlantic, deep sea drilling project, Leg 40. In: Bolli, H.M., Ryan, W.B.F., et al. (Eds.), Initial Reports of the Deep Sea Drilling Project 40. US Government Printing Office, Washington, pp. 839–843. Fr¨ohlich, F., 1989. Deep-sea biogenic silica: new structural and analytical data from infrared analysis - geological implications. Terra Nova 1, 267–273.

Fr¨ohlich, F., Gendron-Badou, A., 2003. La spectroscopie infrarouge, un outil polyvalent. In: Miskovsky, J.C. (Ed.), G´eologie de la Pr´ehistoire. AEEGP, e´ diteur, Paris, pp 663–667. Gallicchio, S., Marcucci, M., Pieri, P., Premoli Silva, I., Sabato, L., Salvini, G., 1996. Stratigraphical data from a Cretaceous claystones sequence of the “Argile Varicolori” in the Southern Apennines (Basilicata, Italy). Palaeopelagos 6, 261–272. Gorican, S., 1994. Jurassic and Cretaceous radiolarian biostratigraphy and sedimentary evolution of the Budva Zone (Dinarides, Montenegro). M´emoires de G´eologie (Lausanne) 18, 1–177. Gorican, S., Smuc, A., 2004. Albian Radiolaria and Cretaceous stratigraphy of Mt Mangart (Western Slovenia). Razprave IV. Razereda sazu XLV-3, 29–49. Haeckel, E., 1862. Die Radiolarien (Rhizopoda Radiolaria). Eine monographie. Reimer, Berlin. Haeckel, E., 1881. Entwurf eines radiolarien-systems auf grund von studien der challenger-radiolarien. Jenaische Zeitschrift f¨ur Naturwissenschaft 15, 418–472. Hallam, A., Wignall, P.B., 1997. Mass Extinctions and their aftermath. Oxford University Press, Oxford. Harries, P., Little, C.T.S., 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinction: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 39–66. Holmes, W.M., 1900. On Radiolaria from the Upper Chalk at Coulsdon (Surrey). Quarterly Journal of the Geological Society of London 56, 694–704. Jenkyns, H.C., 1980. Cretaceous anoxic events from continents to oceans. Journal of the Geological Society of London 137, 171–188. Khan, S., Urquhart, E., Thurow, J., 1999. Radiolaria and Cenomanian–Turonian environments of Hacho de Montejaque, Penibetic, southern Spain. In: Farinacci, A., Lord, A.R. (Eds.), Depositional Episodes and Bioevents. Palaeopelagos Special Publication 2, pp. 123–143. Kiessling, W., 1996. Facies characterization of Mid-Mesozoic deep-water sediments by quantitative analysis of siliceous microfaunas. Facies 35, 237–274. Kozlova, G.E., Gorbovetz, A.N., 1966. Radiolarians of the Upper Eocene deposits of West Siberian Lowland, Proceedings of the All Union Petroleum Scientific Research Institute for Geological Survey (VNIGRI) 248, pp. 1–159. Kozur, H., Mostler, H., 1978. Beitrage zur Erforschung der mesozoischen Radiolarien. Teil II: Oberfamilie Trematodiscacea Haeckel, 1862 emend. und Beschreibung ihrer triassischen Vertreter. Geologische Pal¨aontologische Mitteillungen Innsbruck 8, 123–182. Kozur, H., Mostler, H., 1982. Entactinaria subordo nov., a new radiolarian suborder. Geologische Pal¨aontologische Mitteilungen Innsbruck 11, 399–414. Kuhnt, W., 1990. Agglutinated foraminifera of western Mediterranean Upper Cretaceous pelagic limestones (Umbria Apennines, Italy, and Betic Cordillera, Southern Spain). Micropaleontology 36, 133–160. Kuhnt, W., Thurow, J., Wiedmann, J., Herbin, J.P., 1986. Oceanic anoxic conditions around the Cenomanian/Turonian boundary and the response of biota. Mitteilungen Geologisch-Pal¨aontologische, Institut Universitet Hamburg 60, 205–246. Kuroda, J., Ohkouchi, N., Ishii, T., Tokuyama, H., Taira, A., 2005. Lamina-scale analysis of sedimentary components in Cretaceous black shales by chemical compositional mapping: Implications for paleoenvironmental changes during the oceanic anoxic events. Geochimica, Cosmochimica Acta 69, 1479–1494. Leckie, R.M., Bralower, T.J., Casham, R., 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing the mid-Cretaceous. Paleoceanography 17, 1–29. Lipman, R.Kh., 1969. Novy rod i novyye vidy eotsenovykh radiolaryariy SSSR. Vsesyuz. Nauchno-Issled. Geol. Inst. Trudy 130, 181–200. Marcucci Passerini, M., Bettini, P., Dainelli, J., Sirugo, A., 1991. The “Bonarelli Horizon” in the central Apennines (Italy): radiolarian biostratigraphy. Cretaceous Research 12, 321–331. Marcucci Passerini, M., Cabella, R., Passerini, P., 1994. Early–late Cretaceous radiolarian deposits in the Northern Apennines: biostratigraphy and mineralogical data from the “Scisti Policromi” in the Tuscan succession near Monsummanto, Tuscany. Palaeopelagos 4, 23–34. Mekik, F., 2000. Early Cretaceous Pantanelliidae (Radiolaria) from northwest Turkey. Micropaleontology 46, 1–30.

B. Musavu-Moussavou et al. / Revue de micropal´eontologie 50 (2007) 253–287 Morel, L., 1998. Stratigraphie a` haute r´esolution de passage C´enomanien–Turonien. Acad´emie de Paris, Th`ese de l’Universit´e Pierre-et-Marie-Curie, Paris. Munasri, K.W., Bambang, W., 1994. Cretaceous radiolarians from the LukUlo Melange Complex in the Karangsambung area, central Java, Indonesia. Journal of Southeast Asian Earth Sciences 9, 29–43. Musavu-Moussavou, B., Danelian, T., 2006. The radiolarian response to oceanic anoxic event 2 in the southern part of the Northern proto-Atlantic (Demerara Rise, ODP leg 207). Revue de Micropal´eontologie 49, 141–163. Nakaseko, K., Nishimura, A., Sugano, K., 1979. Cretaceous Radiolaria in the Shimanto Belt, Japan. News of Osaka Micropaleontologist special publication 2, 1–49. O’Dogherty, L., 1994. Biochronology and paleontology of Mid-Cretaceous radiolarians from Northern Apennines (Italy) and Betic Cordillera (Spain). M´emoires de G´eologie (Lausanne) 21, 1–411. O’Dogherty, L., Guex, J., 2002. Rates and pattern of evolution among Cretaceous radiolarians: relations with global paleoceanographic events. Micropaleontology 48 (supplement 1), 1–22. Pessagno Jr., E.A., 1963. Upper Cretaceous Radiolaria from Puerto Rico. Micropaleontology 9, 197–214. Pessagno Jr., E.A., 1969. The Neosciadiocapsidae, a new family of Upper Cretaceous Radiolaria. Bulletin of American Paleontology 56, 377–439. Pessagno Jr., E.A., 1971a. Jurassic and Cretaceous Hagiastridae from BlakeBahama basin (Site 5A, JOIDES Leg 1) and the Great Valley sequence, California Coast ranges. Bulletins of American Paleontology 60, 5–83. Pessagno Jr., E.A., 1971b. A new radiolarian from the Upper Cretaceous of the California Coast Ranges. Micropaleontology 17, 361–364. Pessagno Jr., E.A., 1972. Cretaceous Radiolaria. Part I: the Phaseliformidae, new family, and other Spongodiscacea from the Upper Cretaceous portion of the Great Valley Sequence. Part II: Pseudoaulophacidae Riedel from the Cretaceous of California and the Blake-Bahama basin (JOIDES leg 1). Bulletins of American Paleontology 61, 269–328. Pessagno Jr., E.A., 1973. Upper Cretaceous Spumellarian from the Great Valley sequence California coast ranges. Bulletins of American Paleontology 63, 49–102. Pessagno Jr., E.A., 1976. Radiolarian zonation and stratigraphy of the Upper Cretaceous of the Great Valley sequence, California coast ranges. Micropaleontology special publication 2, 1–95. Pessagno Jr., E.A., 1977a. Upper Jurassic Radiolaria and radiolarian biostratigraphy of California coast ranges. Micropaleontology 23, 56–113. Pessagno Jr., E.A., 1977b. Lower Cretaceous radiolarian biostratigraphy of Great Valley Sequence and Franciscan complex, California coast ranges. Cushman foundation for foraminiferal research, special publication 15, 1–87. Pessagno Jr., E.A., Six, W.M., Yang, Q., 1989. The Xiphostylidae Haeckel and Parvivaccidae, n. fam., (Radiolaria) from the North American Jurassic. Micropaleontology 35, 193–255. Petrushevskaya, M.G., Kozlova, G.E., 1972. Radiolaria: leg 14, deep drilling project. In: Hayes, D.E., Pimm, A.C., et al. (Eds.), Initial Reports of Deep Sea Drilling Project 14. US Government Printing Office, Washington, pp. 495–648. Pignotti, L., 1994. The Cenomanian–Turonian siliceous-anoxic event in the Scisti Policromi (Tuscan succession, Northern Apennines): data on radiolarian and foraminiferal biostratigraphy. Palaeopelagos 4, 141–153. Premoli Silva, I., Erba, E., Salvini, G., Locatelli, C., Verga, D., 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. Journal of Foraminiferal Research 29, 352–370. Riedel, W.R, 1967. Subclass Radiolaria. In: Harland, W.B., et al. (Eds.), The Fossil Record. A Symposium with Documentation. Geological Society of London, pp. 291–298. Riedel, W.R., 1971. Systematic classification of polycystine Radiolaria. In: Funnell, B.M., Riedel, W.R. (Eds.), The micropaleontology of the oceans. Cambridge University Press, Cambridge, pp. 649–661. R¨ust, D., 1885. Beitrage zur Kenntniss der fossilen Radiolarien aus Gesteinen des Jura. Palaeontographica 31, 269–321. R¨ust, D., 1898. Neue Beitrage zur Kenntniss der fossilen Radiolarien aus Gesteinen des Jura und der Kreide. Palaeontographica 45, 1–67. Salvini, G., Marcucci Passerini, M., 1998. The radiolarian assemblages of the Bonarelli Horizon in the Umbria-Marches Apennines and Southern Alps, Italy. Cretaceous Research 19, 777–804.

287

Sanfilippo, A., Riedel, W.R., 1985. Cretaceous Radiolaria. In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge/New York, pp. 573–630. Schaaf, A., 1981. Late Cretaceous Radiolaria from Deep Sea Drilling Project Leg 621. In: Thiede, J., Vaillier, T.L., et al. (Eds.), Initial Reports of the Deep Sea Drilling Project 62. US Government Printing Office, Washington, pp. 419–470. Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55, 179–184. Scopelliti, G., Bellanca, A., Coccioni, R., Luciani, V., Neri, R., Baudin, F., Chiari, M., Marcucci, M., 2004. High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli level’ (OAE2, Latest Cenomanian) from the Calabianca–Guidaloca composite section, northwestern Sicily, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 208, 293–317. Scopelliti, G., Bellanca, A., Neri, R., Baudin, F., Coccioni, R., 2006. Comparative high-resolution chemostratigraphy of the Bonarelli level from the reference Bottaccione section (Umbria-Marche Apennines) and from an equivalent section in NW Sicily: consistent and contrasting responses to OAE2. Chemical Geology 228, 266–285. Squinabol, S., 1903a. Radiolarie fossile di Teolo (Euganei). Atti e memorie dell’Accademia di Scienze di Lettere ed Arti Padova, n. ser. 19, 127–130. Squinabol, S., 1903b. Le Radiolarie dei noduli selciosi nella Scaglia degli Euganei. Contribuzione I. Rivista Italiana di Paleontologia 19, 127–130. Squinabol, S., 1904. Radiolarie cretacee degli Euganei. Atti e memorie dell’Accademia di Scienze, Lettere ed Arti, Padova, n. ser. 20, 171–244. Squinabol, S., 1914. Contributo alla conoscenza dei Radiolarii fossili del Veneto. Appendice di un genere di Radiolari caratteristico del Secondario. Memorie dell’Istituto Geologico della R. Universita di Padova 2, 249–306. Suzuki, H., Yamaguchi, M., Setoguchi, T., 2002. Cretaceous radiolaria from chert pebbles of the Miocene Honda Group of Huila, central Colombia. Neues Jahrbuch f¨ur Geologie und Pal¨aontologie Monatshefte 1, 48–64. Taketani, Y., 1982. Cretaceous radiolarian biostratigraphy of the Urakawa and Obira Areas, Hokkaido. Science Reports of the Tohuku University, Sendai 52, 1–76. Tan, S.H., 1927. Over de samenstelling en het onstaan van krijten mergelgesteenten van de Molukken. In: Brouwer, H.A. (Ed.), Jaarboek van het mijnwezen in Nederlandsch Oost-Indie, Jaargan 55, 1926, verhandelingen, 3rd gedeelte, pp. 5–165. Thurow, J., 1998. Cretaceous radolarians of the North Atlantic Ocean: ODP Leg 103 (Sites 638, 640 and 641). In: Boillot, G., Winterer, E.L. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, pp. 379–418. Tsikos, H., Jenkyns, H.C., Walsworth-Bell, B., Petrizzo, M.R., Forster, A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., Sinninghe Damst´e, J.S., 2004. Carbon-isotope stratigraphy recorded by the Cenomanian/Turonian oceanic anoxic event: correlation and implications based on three key-localities. Journal of the Geological Society of London 161, 711–719. Tumanda, F.P., 1989. Cretaceous Radiolaria biostratigraphy in the Esashi Mountain area, Northern Hokkaido, Japan. Science Reports of the Institute of Geoscience, University of Tsukuba, section B10, 1–44. Urquhart, E., 1994. New data on the ranges of some Cretaceous Tethyan radiolaria. Comptes Rendus de l’Acad´emie des Sciences de Paris (2) 318, 1401–1407. Vishnevskaya, V., De Wever, P., 1998. Upper Cretaceous Radiolaria from the Russian Platform (Moscow Basin). Revue de Micropal´eontologie 41, 235–265. Wu, H.R., 1986. Some new genera and species of Cenomanian Radiolarian from southern Xizang (Tibet). Acta Micropaleontologica Sinica 3, 347–360. Yurtsever, T.S., Tekin, U.K., Demirel, I.H., 2003. First evidence of the Cenomanian/Turonian boundary event (CTBE) in the Alakirc¸ay Nappe of Antalya Nappes, southwest Turkey. Cretaceous Research 24, 41–53. Ziabrev, S.V., Aitchison, J.C., Abrajevitch, A.V., Badengzhu, Davis, A.M., Luo, H., 2003. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet. Journal of the Geological Society of London 160, 591–599. ¨ Zittel, K.A., 1876. Uber einige fossile Radiolarien aus der norddeutschen Kreiden. Zeitschrift der Deutschen Geologischen Gesellschaft 28, 75–87.