Thermal conductivity of Nylon 46, Nylon 66 and Nylon 610 characterized by Flash DSC measurement

Thermal conductivity of Nylon 46, Nylon 66 and Nylon 610 characterized by Flash DSC measurement

Journal Pre-proof Thermal Conductivity of Nylon 46, Nylon 66 and Nylon 610 Characterized by Flash DSC Measurement Kefeng Xie, Yucheng He, Jun Cai, Wen...

2MB Sizes 0 Downloads 79 Views

Journal Pre-proof Thermal Conductivity of Nylon 46, Nylon 66 and Nylon 610 Characterized by Flash DSC Measurement Kefeng Xie, Yucheng He, Jun Cai, Wenbing Hu

PII:

S0040-6031(19)30851-2

DOI:

https://doi.org/10.1016/j.tca.2019.178445

Reference:

TCA 178445

To appear in:

Thermochimica Acta

Received Date:

19 September 2019

Revised Date:

3 November 2019

Accepted Date:

4 November 2019

Please cite this article as: Xie K, He Y, Cai J, Hu W, Thermal Conductivity of Nylon 46, Nylon 66 and Nylon 610 Characterized by Flash DSC Measurement, Thermochimica Acta (2019), doi: https://doi.org/10.1016/j.tca.2019.178445

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier.

Thermal Conductivity of Nylon 46, Nylon 66 and Nylon 610 Characterized by Flash DSC Measurement  

Kefeng Xie, Yucheng He, Jun Cai, Wenbing Hu*

Department of Polymer Science and Engineering, State Key Laboratory of Coordinate Chemistry,

of

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

ro

*E-mail:[email protected]

Jo

ur na

lP

re

-p

Graphical abstract

1   

Highlights:   

1 The results are consistent with the results of conventional approaches;  2 The general applicability of Flash DSC to the thermal conductivity of bulk materials was  verified; 



2 Higher hydrogen‐bonding density favors higher thermal conductivity. 

Abstract We recently developed Flash DSC application to characterize the cross-plane thermal

of

conductivity of polyethylene thin films (Thermochimica Acta 2019, 677, 21-25). We hereby applied this method to measure the thermal conductivities of Nylon 46, Nylon

ro

66 and Nylon 610 after their complete crystallization at 156.6 °C, i.e. the temperature around the melting points of Indium particles. The melting point differences of two

-p

Indium particles separately placed on the top of the Nylon samples and on the reference cell exhibit a linear dependence of the heating rates, demonstrating the Fourier’s heat

re

conduction law. From the slope, we further derived the thermal conductivity after we measured the specific heat capacity via conventional DSC and measured the sample

lP

thickness via the laser confocal fluorescence microscope. The obtained thermal conductivities of three Nylon samples increase with their hydrogen-bonding densities, which are consistent with conventional experimental approaches. The observations

ur na

validated the general application of our method for the measurement of thermal conductivity of bulk materials.

Jo

Keywords: Thermal conductivity, Flash DSC, Nylons, Hydrogen-bonding

2   

1. Introduction Fast-scan chip-calorimetry has been developed in recent years [1]. The chip sensor uses a minute sample mass to effectively reduce the thermal lag [2] and thus allows a rapid heating up to 1×106 K s-1 [3,4], which brings many promised advantages and expands the potential application of DSC measurement [5]. In 2010, Mettler-Toledo company adopted the ceramic-substrate chip sensor MultiSTAR USF1 (XI-400) to make the first

of

commercialized power-compensated fast-scanning chip-calorimeter Flash DSC 1 [6,7,8]. The apparatus of Flash DSC can use the mechanical refrigerator for the effective

ro

range of measurement from -100 to 450 °C, for the maximum heating rate 40,000 K/s and the maximum cooling rate -4,000 K s-1 [9]. Flash DSC has been widely applied to

-p

characterize various aspects of crystallization in polymer materials [10], such as the low-temperature crystal nucleation [11,12], crystallization kinetics [13,14,15,16,17],

re

crystal melting [18,19] and crystal annealing [20,21]. Most recently, the thermal lags between the top and the bottom of the regularly shaped samples were characterized by

lP

the melting points of two Indium particles separately placed on the sample top and the cell surface without sample [22]. The melting point differences of Indium particles between the sample top and the reference cell were found to exhibit a good linear

ur na

relationship with the heating rates, demonstrating the Fourier’s heat conduction law while the slope k provided the thermal conductivity on the cross-plane direction of polyethylene thin films [23]. He et al. have derived the cross-plane thermal conductivity of thin films [23], as given by

λs=ρs×cs×dc2/k

(1)

Jo

where λs is the cross-plane thermal conductivity, ρs is the sample density, cs is the

specific heat capacity, dc is the film thickness. Compared to other conventional steady-

state approaches [24,25] and even to the transient approaches [26,27,28,29], the advantages of this Flash DSC measurement are obvious: small and directional sample size for free temporal and spatial selection inside solid or viscous bulk samples. In this report, we continue to use this approach to characterize thermal conductivity of series polyamides with various hydrogen-bonding densities crystallized at the temperature 3 

 

around the melting point of Indium particles. Our results will demonstrate and thus validate the general application of this method in the bulk materials. Thermal conductivity of bulk materials mainly relays on two kinds of heat carriers: the electron in the conductive matter, and the phonon in the non-conductive matter. In principle, each phonon can carry more heat than each electron, and the free path of phonon determines the thermal conductivity [30]. Therefore, while diamond holding all carbon-carbon covalent bonds exhibits the highest thermal conductivity around 2000

of

W m-1 K-1 [31], polymer materials holding also carbon-carbon covalent bonds along the chain show only around 0.2 W m-1 K-1, ten thousand times less than in the case of

ro

diamond, due to phonon free path reduced seriously by phonon dispersion and

incomplete lattice [32]. For enhancing the thermal conductivity of polymer materials,

-p

the free path of phonon can be extended by either the orientational order of polymer chains or the inter-chain interactions. Recently, the stretching of polyethylene thin films

re

raises thermal conductivity to 62 W m-1 K-1, higher than in case of many metals, while polyethylene nanofibers hold 104 W m-1 K-1 and its single crystals can theoretically

lP

reach up to 237 W m-1 K-1 [33]. On the other hand, a network of thermal conductive interchain bonds can likewise enhance the thermal conductivity in amorphous polymer blends [34]. More specifically, strong hydrogen-bonding benefits the thermal

ur na

conductivity of engineering polymers, because it serves as “soft grips” to restrict the torsional motion of polymer chains [35]. In this sense, the enhancement of thermal conductivity can be tuned by changing the density of hydrogen bonding. Hereby, we employed our Flash DSC measurement to characterize the thermal conductivities of

Jo

Nylon 46, Nylon 66 and Nylon 610 after crystallized at 156.6 °C, and to prove that their thermal conductivity enhances with the higher hydrogen-bonding density.

4   

2. Materials and Methods 2.1 Materials The sample of Nylon 46 was kindly supplied by DSM Company, with the density 1.180 g cm-3 and the melting point 297 °C. The sample of Nylon 66 was purchased from Sigma Aldrich Company, with the density 1.140 g cm-3 and the melting point 264 °C.

of

The sample of Nylon 610 was kindly supplied by Shandong Guangyin New Materials Company, with the density 1.080 g cm-3 and the melting point 229 °C. The Indium

ro

particles were supplied by Mettler-Toledo Company as the standard for the temperature

2.2 Flash DSC Measurement

-p

calibration of DSC measurement.

re

Flash DSC 1 (Mettler-Toledo, Switzerland) equipped with optical microscope was used with Huber TC100 intracooler and the inert atmosphere of Nitrogen gas at a purging

lP

rate of 50 mL min-1. The chip-sensor was pre-conditioned according to the instruction. Under an optical microscope with a certain magnification, the small samples were cut into thin film shapes of tiny pieces with almost uniform thickness by an anatomical

ur na

knife. Then, the prepared samples were transferred to the sample cell of the sensor, which has been covered by a very thin layer of silicone oil for a good thermal contact and a protection of the sensor upon the removal of the sample. We neglected the additional thermal lag caused by this very thin layer of silicone oil in the thermal

Jo

conductivity measurement. Finally, Flash DSC 1 executed the programmed heating processes for the observation of the melting temperatures of Indium particles placed separately on the top of the samples and on the reference cell, as shown in Fig. 1. Since the sizes of Indium particles were relatively small and their thermal conductivities were relatively high, we neglected the thermal lag of Indium particles in the thermal conductivity measurement.

5   

Indium particle 1 Film sample

Indium particle 2

ro

of

Chip-sensor with twin cells

Sample cell

-p

Reference cell

re

Figure 1. Schematic illustration and photographs of two indium particles separately placed on the top surface of the regular-shaped thin film sample in the sample cell and on the surface of the

lP

reference cell.

ur na

2.3 Conventional DSC Measurement Conventional DSC experiments were carried out by using DSC 1/700 (Mettler-Toledo AG, Switzerland) with FT100-MT internal cooler (Julabo AG, Germany) and purging inert Nitrogen gas (50 mL min-1). The temperature was calibrated by Indium standard.

Jo

The specific heat capacities of samples were measured by the standard three-segment method referring to the standard Sapphire with known specific heat capacity [36] at the temperature around the melting point of Indium.

2.4 Laser Confocal Fluorescence Microscope Measurement Laser confocal fluorescence microscope LSM 710 (Zeiss, Germany) was used in the 6   

experiment, with 20-times objective lens and 10-nm Z-step motor drive for measurement. The thickness of Nylon samples was calculated by the vertical height difference of focusing between the chip-sensor platform and the fluorescent Rhodamine B casted via ethanol solvent on the top of the sample, respectively, as illustrated in Fig. 2. The emission wavelength of fluorescence observation was 543 nm. 10-nm steps in

re

-p

ro

of

the adjustment of focus were accurate enough in comparison to the sample thickness.

lP

Figure 2. Images of focusing on the chip-sensor platform (left) under laser confocal

fluorescence microscope and on Rhodamine B (right, red bright region in the center) spread on

ur na

the top of the thin film sample. The emission wavelength of fluorescence observation was 543 nm.

3. Results and discussion

Jo

3.1 Preparation samples with identical thermal histories We used Flash DSC 1 to compare the crystallization kinetics of three Nylon samples at 156.6 °C. The temperature 156.6 °C was chosen because it was the onset melting temperature of Indium particles observed in the reference cell, indicating the beginning of thermal conduction that we designed to study upon heating scanning. The temperature was used to calibrate the instrument temperature according to the standard protocol for DSC measurement. We first heated Nylon 46, Nylon 66 and Nylon 610 samples to 360 °C with the 7   

heating rate 3000 K s-1, and then held for 2 seconds to erase their thermal histories and to ensure a perfect thermal contact of the melted samples on the sample cell. After that, the samples were cooled at – 3000 K s-1 to 156.6 °C and were stayed for various periods before cooling (-4000 K s-1) to -50 °C and heating (4000 K s-1) back in order to observe the saturation of melting peaks that reflects the completion of isothermal crystallization. The temperature protocol and the melting curves of three samples are shown in Fig. 3. One can see that Nylon 46 crystallizes with the saturation time around 0.3 s when no

of

more cold crystallization occurs, Nylon 66 needs about 1.5 s to complete crystallization, and Nylon 610 with the saturation time around 10 s. We made the total period of 1000

ro

s to ensure the complete isothermal crystallization in each sample used for the subsequent measurement of thermal conductivity.

Heating rate 4000 K/s

lP

Cooling rate -4000 K/s -50 °C

Time

-8

-1

5×10 JK

Nylon 46

Crystallization time 10 s 7s 4s 2s 1s 0.3 s 0.1 s 0.04 s 0.02 s 0.014 s 0.012 s 0.007 s

re

Cooling rate Heating rate -3000 K/s 3000 K/s 156.6 °C, 0-1000 s

Endo up

-1

360 °C

Temperature

Apparent heat capacity / J K

0.2 s

-p

b.

a.

0.004 s 0s

Heating at 4000 K/s

0

50

100

    

150

200

250

300

Temperature / °C

-1

Crystallization time

Nylon 66

-1

ur na

Endo up

45 s

Apparent heat capacity / J K

2×10 JK

30 s 15 s

5s 1.5 s 0.7 s 0.5 s 0.3 s 0.2 s 0.1 s 0.04 s 0.01 s 0s

Heating at 4000 K/s

Jo

Apparent heat capacity / J K

-1

-7

0

50

100

150

200

250

Temperature / °C

300

Endo up

d.

c.

-7

2×10 JK

Nylon 610

Crystallization time 90 s 60 s 30 s 10 s 5s 2s 1.7 s 1.4 s 1s 0.8 s 0.5 s 0.2 s 0.1 s 0s

Heating at 4000 K/s

0

     

-1

50

100

150

200

250

Temperature / °C

Figure 3. (a) Illustration of temperature program for isothermal crystallization and subsequent melting of three samples. (b-d) Heating curves of three samples after isothermal crystallization with various periods at 156.6 °C as labeled.  

8   

3.2 Measurement of thermal lags After three Nylon samples were prepared with identical crystallization histories, we placed two Indium particles of similar masses separately on the top of the samples in the sample cell and on the center surface of the reference cell in the chip-sensor, as shown in Fig. 1. The melting points of the two Indium particles were then measured with the temperature scanning programs shown in Fig. 4a. The differences of melting

of

points of two Indium particles were compared at different heating rates from 10 to 120 K s-1.

Heating rate 3000 K/s

Heating rate 10, 20, 30, …, 120 K/s

re

-100 °C

-1

ro

Cooling rate -3000 K/s

-6

2×10 J K

Nylon 46

Time

-1

Heating rate 10 K s 20

ur na

30

160

50 60 70 80 90 100 120

In. surf.

In. ref.

150

40

170

180

Temperature / °C

d.

Endo up

Nylon 66

-1

-1

Apparent Heat Capacity / J K

-6

2×10 JK

160

       

lP

Endo up

Apparent heat capacity / J K

-1

c.

40 50 60 70 80 90 100 120

170

180

190

 

Temperature / °C

-6

5×10 J K

-1

Nylon 610 -1

Heating rate 10 K s

30 40 50 60 70 80 90 100 120 In. surf.

In. ref.

      

30

20

150

190

20

In. surf.

In. ref.

150

-1

Heating rate 10 K s

-p

2s

200 °C

Temperature

Apparent heat capacity / J K

-1

a.

Endo up

b.

160

170

180

190

Temperature / °C

Jo

Figure 4. (a) Illustration of the temperature-scanning program for the thermal lag measurements. (b-d) Heating curves of apparent heat capacity of Nylon 46, Nylon 66 and Nylon 610 samples holding two Indium particles separately placed on the sample top and on the reference cell under various heating rates as labeled. The peaks are the melting of two Indium particles.

The heating curves of two Indium particles at various heating rates are shown in Fig. 4b-4d. One can see that when heated at a rate of 10 K s-1, all the Indium particles 9   

in the reference sides begin to melt at 156.6 °C, which are not much sensitive to the heating rates. The other Indium particles placed on the sample top begin to melt around 164 °C, which exhibit the melting peaks shifting and lowering with the increase of heating rates. The melting point was read at the onset temperature of melting peaks. The onset temperature was defined as the intersection between the baseline and the extrapolation from the highest tangent of the low-temperature flank of the melting peak. Figure 5 summarizes the onset temperature differences between

of

two melting peaks of Indium particles at various heating rates. One can see that there is a good linear relationship between the melting point differences and the heating

ro

rates, for the Indium particles on all three samples. The linear relationship reflects that the cross-plane heat flux in the film sample conforms to the Fourier’s heat conduction

-p

law. The thermal conductivity can thus be derived from the slope, with the specific

re

heat capacity and the sample film thickness according to Eqn. (1).

Nylon 66

lP

20

Fitting slope: 7.75×10-2 s

16

Nylon 610 Nylon 46

4.95×10-2 s

ur na

Melting point difference /K

24

5.22×10-2 s

12

8

20

40

60

80

100

120

140

-1

Heating rate /K s

Jo

0

Figure 5. Melting point differences of two Indium particles at various heating rates.

Data were averaged over three independent measurements, with error bars. The melting points were read at the onset temperatures of melting peaks.

10   

3.3 Calculation of thermal conductivity In order to eliminate the systematic errors caused by the instrument itself and the measuring environment, we used the indirect three-segment method with standard sapphire as reference to measure the specific heat capacity of Nylon samples. The heat flux values of Nylon samples, standard sapphire and blank crucible were measured by conventional DSC with the same aluminum crucibles at the heating rate

of

of 20 K min-1, and the temperature range of 100-200 °C. It was necessary to set the isothermal program for 5 min at the beginning of temperature range 100 °C and the

ro

end 200 °C, respectively, so as to obtain the stable heat flux signals. Thus one could

obtain the stable and repeatable baselines by multiple scanning with blank crucible to

-p

determine the contribution of heat capacity of crucible material. Since the heat flux is the product of sample mass, heating rate and specific heat capacity, one could obtain

re

the specific heat capacity of Nylon samples by the calibration of standard sapphire after subtracted from the baselines of the blank crucible at the temperature of

lP

156.6 °C where the Indium particles on the reference pan began to melt. The calculation results of specific heat capacity of Nylon 46, Nylon 66 and Nylon 610 after three time repeating are separately 1800.1±1.4, 1863.2±0.6, 2571.0±3.6 J Kg-1

ur na

K-1.

The film thickness were measured by using laser confocal fluorescence microscope allowing separate focusing on the cell surface and the sample top as monitored by the fluorescent Rhodamine B, as shown in Fig. 2. The measurement results for the film thickness of Nylon 46, Nylon 66 and Nylon 610 after the above three-time repeating

Jo

are (849±1.05)10-7, (998±2.14)10-7 and (642±1.60)10-7 m, respectively. According to Eqn. (1), the Fourier’s heat conduction law gave the thermal

conductivities of Nylon 46, Nylon 66 and Nylon 610 as summarized in Fig. 6. We compared the measurement results to the literature reports on Nylon 46 [37], Nylon 66 [38] and Nylon 610 [39] at the similar temperatures, and found a satisfying consistence. In addition, the observations confirmed that a higher hydrogen-bonding density results in a higher thermal conductivity. 11 

 

Flash DSC measurement Literature reports 0.28

Nylon 46

of

Nylon 66

0.24

Nylon 610 0.20 100

110

120

130

ro

-1 -1

Thermal conductivity /Wm K

0.32

140

150

re

-p

Amide units per 1000 backbone atoms

Figure 6. Thermal conductivities versus amide unit density on the backbone chains of three Nylon

lP

samples in Flash DSC measurements. The results are averaged over three repeating experiments.

ur na

The literature results measured by other methods are also shown for comparison.

4. Conclusion

We employed Flash DSC measurement to characterize the thermal conductivity of three samples, i.e., Nylon 46, Nylon 66 and Nylon 610. The linear relationship between the

Jo

heating rates and the melting point differences between two Indium particles at the top of Nylon samples and on the blank reference cell follows well Fourier's heat conduction law. The slope thus characterizes the thermal conductivity once one obtained the specific heat capacity via the three-segment method of conventional DSC measurement as well as the sample thickness via the laser confocal fluorescence microscope. The obtained thermal conductivities demonstrated a higher thermal conductivity due to a higher hydrogen-bonding density. Their quantities are consistent with the conventional 12   

approaches of thermal conductivity on the same kinds of samples, which validates the general application of Flash DSC method for the thermal conductivity of bulk solid materials.

No conflict interests The authors claimed no conflict interests in this paper! 

of

Acknowledgements

ro

This work was supported by the National Natural Science Foundation of China (Grant

re

(IRT1252) and the CAS Interdisciplinary Team.

-p

No. 21973042), the Program for Changjiang Scholars and Innovative Research Teams

References

lP

[1] C. Schick, V. Mathot, Fast Scanning Calorimetry, Springer‐Verlag, Berlin, 2016.  [2] W. Winter, G.W.H. Höhne, Chip‐calorimeter for small samples, Thermochimica Acta, 403 (2003) 43‐ 53. 

[3] M.Y. Efremov, E.A. Olson, M. Zhang, F. Schiettekatte, Z.S. Zhang, L.H. Allen, Ultrasensitive, fast, thin‐

ur na

film differential scanning calorimeter, Review of Scientific Instruments, 75 (2004) 179‐191.  [4] A.A. Minakov, C. Schick, Ultrafast thermal processing and nanocalorimetry at heating and cooling  rates up to 1 MK/s, Review of Scientific Instruments, 78 (2007).  [5] A.W. van Herwaarden, Overview of calorimeter chips for various applications, Thermochimica Acta,  432 (2005) 192‐201. 

[6]  V.  Mathot,  M.  Pyda,  T.  Pijpers,  G.  Vanden  Poel,  E.  van  de  Kerkhof,  S.  van  Herwaardeng,  F.  van  Herwaardeng, A. Leenaers, The Flash DSC 1, a power compensation twin‐type, chip‐based fast scanning 

Jo

calorimeter (FSC): First findings on polymers, Thermochimica Acta, 522 (2011) 36‐45. 

[7]  S.  van  Herwaarden,  E.  Iervolino,  F.  van  Herwaarden,  T.  Wijffels,  A.  Leenaers,  V.  Mathot,  Design,  performance and analysis of thermal lag of the UFS1 twin‐calorimeter chip for fast scanning calorimetry  using the Mettler‐Toledo Flash DSC 1, Thermochimica Acta, 522 (2011) 46‐52.  [8]  E.  Iervolino,  A.W.  van  Herwaarden,  F.G.  van  Herwaarden,  E.  van  de  Kerkhof,  P.P.W.  van  Grinsven,  A.C.H.I. Leenaers, V.B.F. Mathot, P.M. Sarro, Temperature calibration and electrical characterization of  the differential scanning calorimeter chip UFS1 for the Mettler‐Toledo Flash DSC 1, Thermochimica Acta,  522 (2011) 53‐59.  [9] G. Vanden Poel, D. Istrate, A. Magon, V. Mathot, Performance and calibration of the Flash DSC 1, a  new, MEMS‐based fast scanning calorimeter, Journal of Thermal Analysis and Calorimetry, 110 (2012)  13   

1533‐1546.  [10] Z.‐l.  Li,  D.‐s. Zhou,  W.‐b.  Hu,  Recent  progress on  Flash  DSC  Study  of polymer  crystallization  and  melting, Acta Polymerica Sinica, (2016) 1179‐1197.  [11]  R. Androsch, C. Schick,  J.W.P. Schmelzer,  Sequence of  enthalpy  relaxation,  homogeneous  crystal  nucleation and crystal growth in glassy polyamide 6, European Polymer Journal, 53 (2014) 100‐108.  [12] R. Androsch, E. Zhuravlev, J.W.P. Schmelzer, C. Schick, Relaxation and crystal nucleation in polymer  glasses, European Polymer Journal, 102 (2018) 195‐208.  [13] J. Wang, Z. Li, R.A. Perez, A.J. Mueller, B. Zhang, S.M. Grayson, W. Hu, Comparing crystallization  rates  between  linear  and  cyclic  poly(epsilon‐caprolactones)  via  fast‐scan  chip‐calorimeter  measurements, Polymer, 63 (2015) 34‐40.  [14] E. Zhuravlev, V. Madhavi, A. Lustiger, R. Androsch, C. Schick, Crystallization of polyethylene at large 

of

undercooling, ACS Macro Letters, 5 (2016) 365‐370. 

[15] D. Kalapat, Q. Tang, X. Zhang, W. Hu, Comparing crystallization kinetics among two G‐resin samples 

and iPP via Flash DSC measurement, Journal of Thermal Analysis and Calorimetry, 128 (2017) 1859‐1866. 

ro

[16]  J.  Cai,  R.  Luo,  R.  Lv,  Y.  He,  D.  Zhou,  W.  Hu,  Crystallization  kinetics  of  ethylene‐co‐propylene 

rubber/isotactic  polypropylene  blend  investigated  via  chip‐calorimeter  measurement,  European  Polymer Journal, 96 (2017) 79‐86. 

-p

[17] Y. He, R. Luo, Z. Li, R. Lv, D. Zhou, S. Lim, X. Ren, H. Gao, W. Hu, Comparing crystallization kinetics  between polyamide 6 and polyketone via chip‐calorimeter measurement, Macromolecular Chemistry  and Physics, 219 (2018) 1700385. 

re

[18]  H.  Gao,  J.  Wang,  C.  Schick,  A.  Toda,  D.  Zhou,  W.  Hu,  Combining  fast‐scan  chip‐calorimeter  with  molecular simulations to investigate superheating behaviors of lamellar polymer crystals, Polymer, 55  (2014) 4307‐4312. 

lP

[19] X. Jiang, Z. Li, J. Wang, H. Gao, D. Zhou, W. Hu, Combining TMDSC measurements between chip‐ calorimeter and molecular simulation to study reversible melting of polymer crystals. Thermothimica  Acta 603 (2015) 79‐84. 

[20] Y. Chen, Q. Shen, W. Hu, Primary and secondary crystallization of fast‐cooled PVDF studied by Flash 

ur na

DSC, WAXD and FTIR. Polymer International 65 (2016) 387‐392.  [21] R. Lv, Y. He, J. Wang, J. Wang, J. Hu, J. Zhang, W. Hu, Flash DSC study on the annealing behaviors of  poly(l‐lactide acid) crystallized in the low temperature region, Polymer, 174 (2019) 123‐129.  [22] E. Zhuravlev, C. Schick, Fast scanning power compensated differential scanning nano‐calorimeter:  1. The device, Thermochimica Acta, 505 (2010) 1‐13.  [23] Y. He, X. Li, L. Ge, Q. Qian, W. Hu, Cross‐plane thermal conductivity of thin films characterized by  Flash DSC measurement, Thermochimica Acta, 677 (2019) 21‐25. 

Jo

[24] A. Tleoubaev, A. Brzezinski, Combined garded‐hot‐plate and heat flow meter method for absolute  thermal conductivity tests excluding thermal contact resistance, in: H. Wang, W.D. Porter, G. Worley 

(Eds.) Thermal Conductivity 27: Thermal Expansion 15, 2005, pp. 502‐510.  [25]  J.  Li,  Twin  heat  flow  meter  measurement  methods  for  thermal  conductivity  of  polyurethane  thermal insulation materials, Chemical Propellants & Polymeric Materials, 8 (2010) 63‐66. 

[26]  M.  Gershenson,  S.  Alterovizt,  Mathematical  method  for  analysis  of  heat‐capacity  and  thermal‐ conductivity measurements by heat pulse technique, Applied Physics, 5 (1975) 329‐334.  [27] F. Righini, G.C. Bussolino, A. Rosso, R.B. Roberts, Thermal‐conductivity by a pulse‐heating method  ‐ theory and experimental apparatus, International Journal of Thermophysics, 11 (1990) 629‐641.  [28] F. Enguehard, D. Boscher, A. Deom, D. Balageas, Measurement of the thermal radial diffusivity of  14   

anisotropic materials by the converging thermal wave technique, Materials Science and Engineering B‐ Solid State Materials for Advanced Technology, 5 (1990) 127‐134.  [29]  C.  Jensen,  M.  Chirtoc,  N.  Horny,  J.S.  Antoniow,  H.  Pron,  H.  Ban,  Thermal  conductivity  profile  determination  in  proton‐irradiated  ZrC  by  spatial  and  frequency  scanning  thermal  wave  methods,  J.  Appl. Phys., 114 (2013) 133509.  [30]  R.W.  Keyes,  High‐temperature  thermal  conductivity  of  insulating  crystals  ‐  relationship  to  the  melting point, Physical Review, 115 (1959) 564‐567.  [31] Y. Yamamoto, T. Imai, K. Tanabe, T. Tsuno, Y. Kumazawa, N, Fujimori. The measurement of thermal  properties of diamond. Diamond and Related Materials 6 (1997) 1057‐1061.  [32] J.H. Zhao, J.W. Jiang, N. Wei, Y.C. Zhang, T. Rabczuk, Thermal conductivity dependence on chain  length in amorphous polymers, J. Appl. Phys., 113 (2013) 184304. 

of

[33] Y. Xu, D. Kraemer, B. Song, Z. Jiang, J. Zhou, J. Loomis, J. Wang, M. Li, H. Ghasemi, X. Huang, X. Li, G. 

Chen, Nanostructured polymer films with metal‐like thermal conductivity, Nature Communications, 10  (2019) 1771. 

ro

[34]  G.‐H.  Kim,  D.  Lee,  A.  Shanker,  L.  Shao,  M.S.  Kwon,  D.  Gidley,  J.  Kim,  K.P.  Pipe,  High  thermal  conductivity in amorphous polymer blends by engineered interchain interactions, Nature Materials, 14  (2015) 295‐300. 

-p

[35]  L. Zhang, M.  Ruesch,  X. Zhang, Z. Bai, L.  Liu, Tuning thermal  conductivity of  crystalline  polymer  nanofibers by interchain hydrogen bonding, RSC Advances, 5 (2015) 87981‐87986.  [36] D. Archer, Thermodynamic properties of synthetic sapphire (α‐Al2O3), standard reference material 

re

720 and the effect of temperature‐scale differences on thermodynamic properties, Journal of Physical  and Chemical Reference Data, 22 (1993) 1441‐1453. 

[37] Y. Yang, D. Li, G. Si, Q. Liu, Y. Chen, Improved thermal and mechanical properties of carbon fiber 

lP

filled polyamide 46 composites, Journal of Polymer Engineering, 37 (2017) 345‐354.  [38] Y. Yang, Thermal Conductivity, in: J.E. Mark (Ed.) Physical Properties of Polymers Handbook, Springer,  New York, 2007, pp. 155‐163. 

Jo

ur na

[39] E.H.I. J. Brandrup, E.A. Grulke, Polymer Handbook, Fourth ed., Wiley, New York, 1999. 

15