Toxicology Letters, 6 (1980) 339-347 o Elsevier/North-Holland Biomedical Press
THIODON TOXICITY: NON-SPECIFIC NINE FRESHWATER TELEOSTS
339
PHOSPHOMONOESTERASES
IN
S.A. SHAFFI Department of Science, (M.P.) (India)
Regional College of Education,
N.C.E.R.T.,
Bhopal -462
013
(Received March 24th, 1980) (Accepted April 19th, 1980)
SUMMARY
The effect of various concentrations of thiodon on tissue non-specific phosphomonoesterases was studied in 9 edible freshwater teleosts from a tropical environment. Sublethal doses (5 and 10 ppm) of thiodon increased alkaline phosphatase in liver, muscle, kidney and brain, while lethal doses (15 and 20 ppm) decreased it. The reverse was the case with acid phosphatase. The greatest changes were recorded in kidney and liver. The increase in the activity of acid phosphatase after lethal doses might be attributable to rupture of the cellular and lysosomal membranes. The decrease in alkaline phosphatase activity might be related to the fall in pH following rupture of these membranes. The changes were greater in major carp species (C. catla, L. rohita and C. mrigala) than in catfish (H. fossilis, C. batrachus and M. seenghala) or snakehead species of murrels (C. s tria tus, C. punt tarus and C. marulius).
INTRODUCTION
Recently studies on toxicology in relation to various biochemical parameters in animal tissues and serum, have been carried out in order to find a better understanding of the effect of pollutants. Various untreated industrial and agricultural wastes pose a serious threat to the quality of water and to aquatic life [l, 4,10,14,15]. In the present investigation an attempt was made to study the effect of various concentrations of thiodon 5 and 10 ppm sublethal, 15 and 20 ppm lethal (Hoechst Pharmaceuticals Ltd.) [ 171 on tissue ‘(kidney, muscle, brain and liver) non-specific phosphomonoesterases (acid and alkaline phosphatase) in 9 freshwater teleosts viz. Labeo rohita (Ham), Cirrhina mrigala (Ham), Catla catla (Ham), Heteropneustes fossilis (Bloch), Clarias batrachus Linn), Mystus seenghala (Sykes), Channa striatus (Bloch), Channa marulius (Ham),
340
and Channa punctatus (Bloch). These 9 form the main bulk obtained from inland fisheries and are in demand due to their high nutritive value. MATERIAL
AND METHODS
Healthy, mature and well-fed specimens of the 9 species, 18-20 cm, were obtained locally and acclimatised in the laboratory for 2 days. Representatives of each species were killed and acid and alkaline phosphatase in kidney, liver, muscle and brain were estimated. Equal numbers of fish were kept in 5, lo,15 and 20 ppm of thiodon for 4 h. A control group was kept in water without biocides. After 4 h exposure the fish were killed and liver, kidney muscle and brain examined. The preparation of tissue samples, enzyme assay and expression of values have been described [ 5,12,13]. RESULTS
Different concentrations of thiodon have effected marked changes in acid and alkaline phosphatase activity in liver, kidney, muscle and brain of the 9 species (Tables I- -VI). Sublethal and lethal concentrations of thiodon increased or decreased the alkaline phosphatase level, respectively (Tables I-III). With acid phosphatase the effects were reversed (Tables IV-VI). The increase in acid phosphatase activity was highest in kidney (C. c&la) followed by brain (L. rohitu), muscle, and liver (C. c&la) (Table IV). The greatest fall in alkaline phosphatase activity was recorded in liver (H. fossilis), followed by muscle (M. seenghala), kidney (C. punctatus), and brain (C. marulius) (see Tables II-IV). The greatest rise in acid phosphatase was recorded in major carps (C. catlu, L. rohitu and C. mrigdu) followed by catfish (H. fossilis, C. butruchus and M. seenghulu) and murrels (C. punctutus, C. murulius and C. striutus) (Tables IV-VI). The fall in alkaline phosphatase activity was greater in catfish than murrels and major carps (Tables I-III). DISCUSSION
It is known that industrial and agricultural effluents damage tissues and disturb various physiological and biochemical processes through accumulation [6,7,9-11,14-161. If prompt measures are not taken for their safe disposal, these pollutants may accumulate in man after consumption of fish. Histological evidence shows that thiodon leads to degeneration and necrosis in liver, kidney, muscle, and brain and may affect metabolic processes (S.A. Shaffi, in prep.). In the present investigation, the increase of acid phosphatase activity after lethal doses may be due to liberation of membrane bound acid phosphatase by rupturing the cellular and lysosomal membranes. De Duve [ 21 postulated that some hydrolytic enzymes are contained in the lysosomes which, on lysis, release the enzymes into the cell system resulting
341 TABLE
I
CHANGES IN TISSUE ALKALINE PHOSPHATASE INTOXICATION -MAJOR CARPS Control
Organ
Thiodon
ACTIVITY
DUE TO THIODON
(ppm)
5
10
15
20
% Fall
0.275 * 0.030
0.340 * 0.041
0.394 * 0.049
0.215 f 0.021
0.146 * 0.013
46.90
0.192 t 0.034
0.232 f 0.019
0.266 f 0.025
0.225 * 0.017
0.132 f 0.011
31.25
0.162 ?r 0.029
0.186 r 0.012
0.218 + 0.011
0.191 t 0.015
0.105 f 0.010
35.18
0.134 f 0.012
0.158 f 0.018
0.186 * 0.010
0.130 t 0.014
0.095 * 0.009
29.10
0.320 f 0.045
0.395 r 0.034
0.464 + 0.058
0.275 k 0.024
0.174 f 0.015
45.62
0.205 k 0.032
0.246 f 0.029
0.284 f 0.017
0.235 t 0.021
0.120 r 0.015
41.14
0.180 * 0.026
0.204 * 0.018
0.296 f 0.022
0.215 k 0.019
0.115 r 0.010
36.11
0.140 + 0.018
0.169 k 0.021
0.205 i 0.019
0.172 c 0.011
0.094 f 0.012
32.85
0.242 * 0.028
.0.274 + 0.030
0.315 f 0.024
0.227 f 0.020
0.134 + 0.014
44.62
0.168 + 0.021
0.198 t 0.014
0.250 * 0.015
0.205 + 0.018
0.095 f 0.021
43.45
0.149 * 0.019
0.170 f 0.015
0.194 ? 0.012
0.168 f 0.017
0.074 f 0.009
50.33
0.156 + 0.016
0.186 f 0.017
0.215 f 0.014
0.164 * 0.012
0.555 * 0.008
58.33
L. rohitu Kidney
Brain
Liver
Muscle
C. mrigala Kidney
Brain
Liver
Muscle
C. catla Kidney
Brain
Liver
Muscle
Values
(Fg of pi/mg
protein
at 37” C) are mean t SEM of 7 replicates.,
342 TABLE
II
CHANGES IN TISSUE ALKALINE INTOXICATION - CATFISH
PHOSPHATASE
Organ
(ppm)
Control
Thiodon
ACTIVITY
DUE TO THIODON
5
10
15
20
% Fall
0.570 * 0.068
0.684 2 0.070
0.756 f. 0.071
0.525 + 0.038
0.240 f 0.019
57.89
0.345 * 0.040
0.415 + 0.051
0.494 f 0.045
0.420 f 0.030
0.196 * 0.015
43.18
0.270 f 0.020
0.346 * 0.039
0.398 + 0.025
0.338 f 0.035
0.090 f 0.010
0.249
r 0.019
0.280 f 0.024
0.326 f 0.019
0.265 f 0.018
0.105 f 0.015
57.83
0.517 f 0.039
0.584 * 0.044
0.695 f 0.052
0.380 f 0.024
0.274 f. 0.016
47.00
0.307 f 0.024
0.364 k 0.032
0.454 r 0.030
0.346 f 0.018
0.160 f 0.024
41.96
0.260 * 0.019
0.315 i 0.024
0.380 f 0.019
0.250 f 0.015
0.120 f 0.017
53.84
0.220 f 0.015
0.256 f 0.019
.0.3 29 f 0.018
0.284 f 0.029
0.090 f 0.009
59.09
0.446 f 0.048
0.508 f 0.039
0.589 + 0.062
0.515 ?I 0.039
0.264 f 0.022
40.80
0.277 f 0.029
0.324 f 0.020
0.398 * 0.038
0.340 + 0.028
0.169 + 0.019
38.98
0.225 f 0.021
+ 0.036
0.384 + 0.032
0.265 r 0.019
0.105 * 0.015
53.33
0.182 i 0.018
0.229 f 0.029
0.305 f 0.040
0.256 f 0.018
0.069 f 0.009
62.08
H. fossilis Kidney
Brain
Liver
Muscle
+ 66.66
C. batrachus Kidney
Brain
Liver
Muscle
M. seenghala Kidney
Brain
Liver
Muscle
Values
(pg of pi/mg
0.294
at 37“ C) are mean * SEM of 7 replicates.
343 TABLE III CHANGES IN TISSUE ALKALINE PHOSPHATASE ACTIVITY INTOXICATION - SNAKE-HEADED FISH Organ
Control
Thiodon (ppm) 5
10
15
20
% Fall
0.050 r 0.070
0.824 + 0.084
0.980 + 0.090
0.545 f 0.039
0.305 * 0.0036
59.33
0.370 + 0.045
0.428 * 0.038
0.594
* 0.046
0.405 + 0.041
0.215 * 0.021
41.89
0.255 f 0.038
0.305 f 0.029
k 0.038
0.345 f 0.028
0.160 f 0.020
37.25
0.230 f 0.026
+ 0.024
0.384 + 0.029
0.325 + 0.019
0.120 f 0.017
47.82
0.674 f 0.064
0.746 f 0.056
0.816 ? 0.071
0.705 k 0.062
0.385 + 0.034
42.87
0.320 * 0.028
0.406 ?r 0.051
0.484 + 0.039
0.360 k 0.031
0.195 f 0.015
39.06
0.221 f 0.021
0.298 f 0.029
0.364 f 0.038
0.245 * 0.019
0.109 ? 0.016
52.94
0.194 k 0.019
0.264 ?: 0.027
0.396
* 0.042
0.215 * 0.021
0.105 r 0.014
46.59
0.625 + 0.048
0.685 f 0.025
0.756 f 0.062
? 0.052
0.325 * 0.021
48.00
0.282 f 0.037
0.348 f. 0.030
0.464 f 0.070
0.384 f 0.042
0.156 f 0.018
44.68
0.182 + 0.029
0.238 f. 0.021
k 0.036
0.210 f 0.030
* 0.021
50.54
0.145 + 0.026
0.190 * 0.018
0.254 5 0.024
0.205 f 0.019
0.065 k 0.009
55.17
c. punctatus Kidney
Brain
Liver
Muscle
C. striatus Kidney
Brain
Liver
Muscle
C. marulius Kidney
Brain
Liver
Muscle
DUE TO THIODON
0.290
0.469
0.299
0.590
0.090
.Values (~1g of pi/mg protein at 3 7” C) are mean f SEM of 7 replicates.
344 TABLE
IV
VARIATION IN TISSUE ACID PHOSPHATASE INTOXICATION - MAJOR CARPS Control
L. rohita Liver
Kidney
Muscle
Brain
C. mrigala Liver
Kidney
Muscle
Brain
C. cafla Liver
Kidney
Muscle
Brain
Values
Thiodon
ACTIVITY
DUE TO THIODON
(ppm)
5
10
15
20
% Rise
0.222 t- 0.019
0.170 * 0.021
0.128 f 0.012
0.245 k 0.022
0.388 + 0.032
81.45
0.151 * 0.020
0.124 + 0.016
0.095 i 0.009
0.178 ? 0.011
0.274 f 0.034
85.74
0.120 i 0.0015
0.090 k 0.018
0.064 t 0.008
0.154 + 0.017
0.209 f 0.021
74.77
0.105 i- 0.011
0.090 i 0.009
0.062 -t 0.008
0.125 * 0.015
0.195 + 0.015
74.16
0.275 ? 0.022
0.230 + 0.019
0.164 + 0.029
0.248 i 0.029
0.489 + 0.052
60.91
0.174 f 0.016
0.144 t 0.021
0.105 i 0.010
0.198 t 0.019
0.280 + 0.024
76.78
0.130 i 0.012
0.105 ?; 0.009
0.084 i 0.007
0.139 i 0.022
0.216 f 0.018
77.81
0.112 i 0.014
0.084 ?; 0.011
0.061 r 0.008
0.124 k 0.010
0.198 + 0.030
66.15
0.178 + 0.011
0.152 + 05012
0.124 f 0.014
0.189 r 0.024
0.315 + 0.025
88.40
0.138 * 0.020
0.118 + 0.011
0.100 f 0.009
0.154 * 0.018
0.260 * 0.066
73.68
0.109 f 0.014
0.084 f 0.010
0.062 i- 0.009
0.154 * 0.029
0.195 f 0.019
76.96
0.095 t 0.009
0.062 t 0.008
0.044 * 0.005
0.085 ? 0.012
0.165 t 0.021
78.89
(pg of pi/mg
protein
at 37” C) are mean f SEM of 7 replicates.
345 TABLE
V
VARIATIONS INTOXICATION
IN TISSUE ACID - CATFISH
Organ
Control
H. fossilis Liver
Kidney
Muscle
C. batrachus Liver
Kidney
Muscle
Brain
M. seenghala Liver
Kidney
Muscle
Brain
Values
ACTIVITY
DUE TO THIODON
(ppm)
5
10
15
20
% Rise
0.345 + 0.024
0.294 * 0.030
0.238 k 0.032
0.305 c 0.016
0.495 k 0.049
43.47
0.244 k 0.019
0.202 f 0.018
0.164 ? 0.020
0.224 2 0.016
0.376 f 0.037
54.09
* 0.015
0.124 c 0.019
0.095 k 0.015
0.196 + 0.017
0.284 * 0.029
57.77
0.155 * 0.012
0.120 + 0.016
0.074 + 0.012
0.138 t 0.014
0.215 + 0.020
36.70
0.310 i 0.019
0.264 * 0.036
0.224 + 0.017
0.338 f 0.039
0.449 ? 0.050
44.83
0.222 * 0.024
0.170 f 0.021
0.134 f 0.015
0.248 f 0.027
0.364 * 0.018
63.96
0.195 f 0.020
0.130 + 0.017
0.084 r 0.009
0.199 * 0.019
0.299 ?r 0.027
53.33
0.174 f 0.015
0.152 f 0.014
0.105 * 0.011
0.189 * 0.021
0.236 f 0.029
35.63
0.280 f 0.032
0.244 r 0.024
0.218 f 0.021
0.296 + 0.019
0.494 f 0.048
76.42
0.192 f 0.027
0.164 k 0.015
0.138 k 0.019
0.245 + 0.029
0.350 f 0.036
82.29
0.170 f 0.019
0.132 f 0.016
0.105 ? 0.015
0.184 k 0.021
0.268 f 0.024
57.64
0.180
Brain
Thiodon
PHOSPHATASE
0.176 0.247 0.128 0.104 f 0.024 f 0.029 52.46 f 0.012 + 0.011 _ protein at 37” C) are mean * SEM of 7 replicates.
0.162 * 0.015 (pg of pi/mg
346 TABLE
VI
VARIATIONS INTOXICATION
IN TISSUE ACID PHOSPHATASE - SNAKE-HEADED FISH
Organ
Control
C. punctatus Liver
Kidney
Muscle
Brain
C. striatus Liver
Kidney
Muscle
Brain
C. marulius Liver
Kidney
Muscle
Brain
Values
Thiodon
ACTIVITY
DUE TO THIODON
(ppm)
5
10
15
20
% Rise
0.380 i 0.039
0.346 f 0.092
0.295 k 0.021
0.395 t 0.032
0.515 + 0.061
35.52
0.295 f 0.028
0.234 * 0.022
0.194 * 0.018
0.308 c 0.019
0.424 f 0.039
43.72
0.215 + 0.019
0.176 f 0.012
0.150 + 0.015
0.245 f 0.030
0.328 f 0.024
52.55
0.165 f 0.024
0.132 * 0.013
0.094 * 0.024
0.154 + 0.020
0.270 * 0.019
69.48
0.436 * 0.054
0.394 + 0.042
0.328 f 0.030
0.429 * 0.020
0.624 ? 0.058
33.90
0.405 + 0.028
0.340 k 0.032
0.294 + 0.026
0.396 f 0.029
0.509 ? 0.047
26.00
0.320 + 0.036
0.281 k 0.020
0.236 k 0.021
0.348 f 0.033
0.448 k 0.037
40.00
0.254 k 0.029
0.218 k 0.012
0.178 f 0.019
0.249 t 0.021
0.394 f 0.029
55.11
0.405 i 0.029
0.369 f 0.037
0.315 r 0.024
0.428 r 0.036
0.564 f 0.044
39.25
0.334 + 0.036
0.284 f 0.029
0.243 f 0.022
0.315 * 0.017
0.490 + 0.039
46.70
0.242 * 0.018
0.205 r 0.017
0.184 f 0.019
0.296 f 0.012
0.348 * 0.025
43.80
0.205 + 0.025
0.174 i 0.015
0.148 * 0.024
0.195 k 0.021
0.325 * 0.036
58.53
(wg of pi/mg
protein
at 37°C)
are mean + SEM of 7 replicates.
347
in a strong positive reaction. Hydrolytic enzymes like acid phosphatase are also presumed to be enclosed within a lipoprotein membrane. This may be one reason why acid phosphatase increases following lethal doses of thiodon. The fall in the activity of alkaline phosphatase from lethal doses of thiodon may be related to a change of pH. Increase and decrease in the activity and acid phosphatase respectively, at sublethal doses of thiodon in different tissues, may be due to uncoupling phosphorylation. The differential action of biocides on acid and alkaline phosphatases in various tissues might be related to factors discussed previously, [8,12]. REFERENCES 1
2 3 ‘4
5
6 7 8 9 10 11 12 13
14 15 16
D.T. Burton, A.H. Jones and J. Cairns, Acute zinc toxicity of Rainbow trout: confirmation of the hypothesis that death is related to tissue hypoxia, J. Fish. Res. Bd. Con. 29 (1972) 1963. C. de Duve, A new group of cytoplasmic particles; Sub-cellular particles, in T. Hayashi (Ed.) Lysosomes, Renald, New York, 1959, p. 128. SK. Konar, Toxicity of heptachlor to aquatic life, J. Wat. Poll. Contam., 42 (1970) 299. S.D. Lewis and W.M. Lewis, The effect of zinc and copper on the osmolarity of blood serum of the channel catfish Ietolurus punctatus, Rofinesque and golden sherier, Notemugorus crysolencos Metchell, Trous. Am. Fish Sot., 100 (1971) 639. S.A. Shaffi, Distribution acid and alkaline phosphatase activity in the normal organs of two freshwater teleosts (C. batrachus (Lim) Barbus stigma (C and U)), Ind. J. Zool., 4 (1977) 24. S.A. Shaffi, Cadmium intoxication on tissue glycogen content in three freshwater teleosts, Curr. Sci., 47 (1978) 868. S.A. Shaffi, Variations in tissue glycogen content serum glucose and lactose level due to copper intoxication in three freshwater teleosts, Cm-r. Sci., 47 (1978) 954. S.A. Shaffi, Biochemical compartmentation of fish tissue, I. Brain energy reserves and its metabolic products, Acta Physiol., 52 (1978) 435. S.A. Shaffi, Effect of zinc intoxication on freshwater fishes, II. Accumulation of metabolic products, Toxicol. Lett., 3 (1979) 319. S.A. Shaffi, The acute toxicity of heptachlor for freshwater fishes, Toxicol. Lett., 4 (1979) 31. S.A. Shaffi, Lead toxicity; biochemical and physiological imbalance in nine freshwater teleosts, Toxicol. Lett., 4 (1979) 155. S.A. Shaffi, Biochemical compartmentation of fish tissues, II. Non-specific phosphomonoesterases in brain, Experientia, 35 (1979) 1280. S.A. Shaffi, Effect of starvation on tissue and serum gluconeogenic enzymes, alkaline phosphatase and tissue glycogen content in H. fossilis Bloch, Acta Physiol., 53 (1979) 509. S.A. Shaffi, The acute industrial effluent toxicity to freshwater fish, Toxicol. Lett., 5 (1980) 183. S.A. Shaffi, Effect of lithium on hexokinase non-specific phosphomonoesterases and ATPase in adult rat brain cien. Cultura (U.S.A.), 32 (1) (1980) 63. S.A. Shaffi, Effect of zinc intoxication on some freshwater fishes, I. Variations in tissue glycogen content, Ann. Limnol., 16 (1980) in press.