Thiodon toxicity: Non-specific phosphomonoesterases in nine freshwater teleosts

Thiodon toxicity: Non-specific phosphomonoesterases in nine freshwater teleosts

Toxicology Letters, 6 (1980) 339-347 o Elsevier/North-Holland Biomedical Press THIODON TOXICITY: NON-SPECIFIC NINE FRESHWATER TELEOSTS 339 PHOSPHOM...

438KB Sizes 0 Downloads 35 Views

Toxicology Letters, 6 (1980) 339-347 o Elsevier/North-Holland Biomedical Press

THIODON TOXICITY: NON-SPECIFIC NINE FRESHWATER TELEOSTS

339

PHOSPHOMONOESTERASES

IN

S.A. SHAFFI Department of Science, (M.P.) (India)

Regional College of Education,

N.C.E.R.T.,

Bhopal -462

013

(Received March 24th, 1980) (Accepted April 19th, 1980)

SUMMARY

The effect of various concentrations of thiodon on tissue non-specific phosphomonoesterases was studied in 9 edible freshwater teleosts from a tropical environment. Sublethal doses (5 and 10 ppm) of thiodon increased alkaline phosphatase in liver, muscle, kidney and brain, while lethal doses (15 and 20 ppm) decreased it. The reverse was the case with acid phosphatase. The greatest changes were recorded in kidney and liver. The increase in the activity of acid phosphatase after lethal doses might be attributable to rupture of the cellular and lysosomal membranes. The decrease in alkaline phosphatase activity might be related to the fall in pH following rupture of these membranes. The changes were greater in major carp species (C. catla, L. rohita and C. mrigala) than in catfish (H. fossilis, C. batrachus and M. seenghala) or snakehead species of murrels (C. s tria tus, C. punt tarus and C. marulius).

INTRODUCTION

Recently studies on toxicology in relation to various biochemical parameters in animal tissues and serum, have been carried out in order to find a better understanding of the effect of pollutants. Various untreated industrial and agricultural wastes pose a serious threat to the quality of water and to aquatic life [l, 4,10,14,15]. In the present investigation an attempt was made to study the effect of various concentrations of thiodon 5 and 10 ppm sublethal, 15 and 20 ppm lethal (Hoechst Pharmaceuticals Ltd.) [ 171 on tissue ‘(kidney, muscle, brain and liver) non-specific phosphomonoesterases (acid and alkaline phosphatase) in 9 freshwater teleosts viz. Labeo rohita (Ham), Cirrhina mrigala (Ham), Catla catla (Ham), Heteropneustes fossilis (Bloch), Clarias batrachus Linn), Mystus seenghala (Sykes), Channa striatus (Bloch), Channa marulius (Ham),

340

and Channa punctatus (Bloch). These 9 form the main bulk obtained from inland fisheries and are in demand due to their high nutritive value. MATERIAL

AND METHODS

Healthy, mature and well-fed specimens of the 9 species, 18-20 cm, were obtained locally and acclimatised in the laboratory for 2 days. Representatives of each species were killed and acid and alkaline phosphatase in kidney, liver, muscle and brain were estimated. Equal numbers of fish were kept in 5, lo,15 and 20 ppm of thiodon for 4 h. A control group was kept in water without biocides. After 4 h exposure the fish were killed and liver, kidney muscle and brain examined. The preparation of tissue samples, enzyme assay and expression of values have been described [ 5,12,13]. RESULTS

Different concentrations of thiodon have effected marked changes in acid and alkaline phosphatase activity in liver, kidney, muscle and brain of the 9 species (Tables I- -VI). Sublethal and lethal concentrations of thiodon increased or decreased the alkaline phosphatase level, respectively (Tables I-III). With acid phosphatase the effects were reversed (Tables IV-VI). The increase in acid phosphatase activity was highest in kidney (C. c&la) followed by brain (L. rohitu), muscle, and liver (C. c&la) (Table IV). The greatest fall in alkaline phosphatase activity was recorded in liver (H. fossilis), followed by muscle (M. seenghala), kidney (C. punctatus), and brain (C. marulius) (see Tables II-IV). The greatest rise in acid phosphatase was recorded in major carps (C. catlu, L. rohitu and C. mrigdu) followed by catfish (H. fossilis, C. butruchus and M. seenghulu) and murrels (C. punctutus, C. murulius and C. striutus) (Tables IV-VI). The fall in alkaline phosphatase activity was greater in catfish than murrels and major carps (Tables I-III). DISCUSSION

It is known that industrial and agricultural effluents damage tissues and disturb various physiological and biochemical processes through accumulation [6,7,9-11,14-161. If prompt measures are not taken for their safe disposal, these pollutants may accumulate in man after consumption of fish. Histological evidence shows that thiodon leads to degeneration and necrosis in liver, kidney, muscle, and brain and may affect metabolic processes (S.A. Shaffi, in prep.). In the present investigation, the increase of acid phosphatase activity after lethal doses may be due to liberation of membrane bound acid phosphatase by rupturing the cellular and lysosomal membranes. De Duve [ 21 postulated that some hydrolytic enzymes are contained in the lysosomes which, on lysis, release the enzymes into the cell system resulting

341 TABLE

I

CHANGES IN TISSUE ALKALINE PHOSPHATASE INTOXICATION -MAJOR CARPS Control

Organ

Thiodon

ACTIVITY

DUE TO THIODON

(ppm)

5

10

15

20

% Fall

0.275 * 0.030

0.340 * 0.041

0.394 * 0.049

0.215 f 0.021

0.146 * 0.013

46.90

0.192 t 0.034

0.232 f 0.019

0.266 f 0.025

0.225 * 0.017

0.132 f 0.011

31.25

0.162 ?r 0.029

0.186 r 0.012

0.218 + 0.011

0.191 t 0.015

0.105 f 0.010

35.18

0.134 f 0.012

0.158 f 0.018

0.186 * 0.010

0.130 t 0.014

0.095 * 0.009

29.10

0.320 f 0.045

0.395 r 0.034

0.464 + 0.058

0.275 k 0.024

0.174 f 0.015

45.62

0.205 k 0.032

0.246 f 0.029

0.284 f 0.017

0.235 t 0.021

0.120 r 0.015

41.14

0.180 * 0.026

0.204 * 0.018

0.296 f 0.022

0.215 k 0.019

0.115 r 0.010

36.11

0.140 + 0.018

0.169 k 0.021

0.205 i 0.019

0.172 c 0.011

0.094 f 0.012

32.85

0.242 * 0.028

.0.274 + 0.030

0.315 f 0.024

0.227 f 0.020

0.134 + 0.014

44.62

0.168 + 0.021

0.198 t 0.014

0.250 * 0.015

0.205 + 0.018

0.095 f 0.021

43.45

0.149 * 0.019

0.170 f 0.015

0.194 ? 0.012

0.168 f 0.017

0.074 f 0.009

50.33

0.156 + 0.016

0.186 f 0.017

0.215 f 0.014

0.164 * 0.012

0.555 * 0.008

58.33

L. rohitu Kidney

Brain

Liver

Muscle

C. mrigala Kidney

Brain

Liver

Muscle

C. catla Kidney

Brain

Liver

Muscle

Values

(Fg of pi/mg

protein

at 37” C) are mean t SEM of 7 replicates.,

342 TABLE

II

CHANGES IN TISSUE ALKALINE INTOXICATION - CATFISH

PHOSPHATASE

Organ

(ppm)

Control

Thiodon

ACTIVITY

DUE TO THIODON

5

10

15

20

% Fall

0.570 * 0.068

0.684 2 0.070

0.756 f. 0.071

0.525 + 0.038

0.240 f 0.019

57.89

0.345 * 0.040

0.415 + 0.051

0.494 f 0.045

0.420 f 0.030

0.196 * 0.015

43.18

0.270 f 0.020

0.346 * 0.039

0.398 + 0.025

0.338 f 0.035

0.090 f 0.010

0.249

r 0.019

0.280 f 0.024

0.326 f 0.019

0.265 f 0.018

0.105 f 0.015

57.83

0.517 f 0.039

0.584 * 0.044

0.695 f 0.052

0.380 f 0.024

0.274 f. 0.016

47.00

0.307 f 0.024

0.364 k 0.032

0.454 r 0.030

0.346 f 0.018

0.160 f 0.024

41.96

0.260 * 0.019

0.315 i 0.024

0.380 f 0.019

0.250 f 0.015

0.120 f 0.017

53.84

0.220 f 0.015

0.256 f 0.019

.0.3 29 f 0.018

0.284 f 0.029

0.090 f 0.009

59.09

0.446 f 0.048

0.508 f 0.039

0.589 + 0.062

0.515 ?I 0.039

0.264 f 0.022

40.80

0.277 f 0.029

0.324 f 0.020

0.398 * 0.038

0.340 + 0.028

0.169 + 0.019

38.98

0.225 f 0.021

+ 0.036

0.384 + 0.032

0.265 r 0.019

0.105 * 0.015

53.33

0.182 i 0.018

0.229 f 0.029

0.305 f 0.040

0.256 f 0.018

0.069 f 0.009

62.08

H. fossilis Kidney

Brain

Liver

Muscle

+ 66.66

C. batrachus Kidney

Brain

Liver

Muscle

M. seenghala Kidney

Brain

Liver

Muscle

Values

(pg of pi/mg

0.294

at 37“ C) are mean * SEM of 7 replicates.

343 TABLE III CHANGES IN TISSUE ALKALINE PHOSPHATASE ACTIVITY INTOXICATION - SNAKE-HEADED FISH Organ

Control

Thiodon (ppm) 5

10

15

20

% Fall

0.050 r 0.070

0.824 + 0.084

0.980 + 0.090

0.545 f 0.039

0.305 * 0.0036

59.33

0.370 + 0.045

0.428 * 0.038

0.594

* 0.046

0.405 + 0.041

0.215 * 0.021

41.89

0.255 f 0.038

0.305 f 0.029

k 0.038

0.345 f 0.028

0.160 f 0.020

37.25

0.230 f 0.026

+ 0.024

0.384 + 0.029

0.325 + 0.019

0.120 f 0.017

47.82

0.674 f 0.064

0.746 f 0.056

0.816 ? 0.071

0.705 k 0.062

0.385 + 0.034

42.87

0.320 * 0.028

0.406 ?r 0.051

0.484 + 0.039

0.360 k 0.031

0.195 f 0.015

39.06

0.221 f 0.021

0.298 f 0.029

0.364 f 0.038

0.245 * 0.019

0.109 ? 0.016

52.94

0.194 k 0.019

0.264 ?: 0.027

0.396

* 0.042

0.215 * 0.021

0.105 r 0.014

46.59

0.625 + 0.048

0.685 f 0.025

0.756 f 0.062

? 0.052

0.325 * 0.021

48.00

0.282 f 0.037

0.348 f. 0.030

0.464 f 0.070

0.384 f 0.042

0.156 f 0.018

44.68

0.182 + 0.029

0.238 f. 0.021

k 0.036

0.210 f 0.030

* 0.021

50.54

0.145 + 0.026

0.190 * 0.018

0.254 5 0.024

0.205 f 0.019

0.065 k 0.009

55.17

c. punctatus Kidney

Brain

Liver

Muscle

C. striatus Kidney

Brain

Liver

Muscle

C. marulius Kidney

Brain

Liver

Muscle

DUE TO THIODON

0.290

0.469

0.299

0.590

0.090

.Values (~1g of pi/mg protein at 3 7” C) are mean f SEM of 7 replicates.

344 TABLE

IV

VARIATION IN TISSUE ACID PHOSPHATASE INTOXICATION - MAJOR CARPS Control

L. rohita Liver

Kidney

Muscle

Brain

C. mrigala Liver

Kidney

Muscle

Brain

C. cafla Liver

Kidney

Muscle

Brain

Values

Thiodon

ACTIVITY

DUE TO THIODON

(ppm)

5

10

15

20

% Rise

0.222 t- 0.019

0.170 * 0.021

0.128 f 0.012

0.245 k 0.022

0.388 + 0.032

81.45

0.151 * 0.020

0.124 + 0.016

0.095 i 0.009

0.178 ? 0.011

0.274 f 0.034

85.74

0.120 i 0.0015

0.090 k 0.018

0.064 t 0.008

0.154 + 0.017

0.209 f 0.021

74.77

0.105 i- 0.011

0.090 i 0.009

0.062 -t 0.008

0.125 * 0.015

0.195 + 0.015

74.16

0.275 ? 0.022

0.230 + 0.019

0.164 + 0.029

0.248 i 0.029

0.489 + 0.052

60.91

0.174 f 0.016

0.144 t 0.021

0.105 i 0.010

0.198 t 0.019

0.280 + 0.024

76.78

0.130 i 0.012

0.105 ?; 0.009

0.084 i 0.007

0.139 i 0.022

0.216 f 0.018

77.81

0.112 i 0.014

0.084 ?; 0.011

0.061 r 0.008

0.124 k 0.010

0.198 + 0.030

66.15

0.178 + 0.011

0.152 + 05012

0.124 f 0.014

0.189 r 0.024

0.315 + 0.025

88.40

0.138 * 0.020

0.118 + 0.011

0.100 f 0.009

0.154 * 0.018

0.260 * 0.066

73.68

0.109 f 0.014

0.084 f 0.010

0.062 i- 0.009

0.154 * 0.029

0.195 f 0.019

76.96

0.095 t 0.009

0.062 t 0.008

0.044 * 0.005

0.085 ? 0.012

0.165 t 0.021

78.89

(pg of pi/mg

protein

at 37” C) are mean f SEM of 7 replicates.

345 TABLE

V

VARIATIONS INTOXICATION

IN TISSUE ACID - CATFISH

Organ

Control

H. fossilis Liver

Kidney

Muscle

C. batrachus Liver

Kidney

Muscle

Brain

M. seenghala Liver

Kidney

Muscle

Brain

Values

ACTIVITY

DUE TO THIODON

(ppm)

5

10

15

20

% Rise

0.345 + 0.024

0.294 * 0.030

0.238 k 0.032

0.305 c 0.016

0.495 k 0.049

43.47

0.244 k 0.019

0.202 f 0.018

0.164 ? 0.020

0.224 2 0.016

0.376 f 0.037

54.09

* 0.015

0.124 c 0.019

0.095 k 0.015

0.196 + 0.017

0.284 * 0.029

57.77

0.155 * 0.012

0.120 + 0.016

0.074 + 0.012

0.138 t 0.014

0.215 + 0.020

36.70

0.310 i 0.019

0.264 * 0.036

0.224 + 0.017

0.338 f 0.039

0.449 ? 0.050

44.83

0.222 * 0.024

0.170 f 0.021

0.134 f 0.015

0.248 f 0.027

0.364 * 0.018

63.96

0.195 f 0.020

0.130 + 0.017

0.084 r 0.009

0.199 * 0.019

0.299 ?r 0.027

53.33

0.174 f 0.015

0.152 f 0.014

0.105 * 0.011

0.189 * 0.021

0.236 f 0.029

35.63

0.280 f 0.032

0.244 r 0.024

0.218 f 0.021

0.296 + 0.019

0.494 f 0.048

76.42

0.192 f 0.027

0.164 k 0.015

0.138 k 0.019

0.245 + 0.029

0.350 f 0.036

82.29

0.170 f 0.019

0.132 f 0.016

0.105 ? 0.015

0.184 k 0.021

0.268 f 0.024

57.64

0.180

Brain

Thiodon

PHOSPHATASE

0.176 0.247 0.128 0.104 f 0.024 f 0.029 52.46 f 0.012 + 0.011 _ protein at 37” C) are mean * SEM of 7 replicates.

0.162 * 0.015 (pg of pi/mg

346 TABLE

VI

VARIATIONS INTOXICATION

IN TISSUE ACID PHOSPHATASE - SNAKE-HEADED FISH

Organ

Control

C. punctatus Liver

Kidney

Muscle

Brain

C. striatus Liver

Kidney

Muscle

Brain

C. marulius Liver

Kidney

Muscle

Brain

Values

Thiodon

ACTIVITY

DUE TO THIODON

(ppm)

5

10

15

20

% Rise

0.380 i 0.039

0.346 f 0.092

0.295 k 0.021

0.395 t 0.032

0.515 + 0.061

35.52

0.295 f 0.028

0.234 * 0.022

0.194 * 0.018

0.308 c 0.019

0.424 f 0.039

43.72

0.215 + 0.019

0.176 f 0.012

0.150 + 0.015

0.245 f 0.030

0.328 f 0.024

52.55

0.165 f 0.024

0.132 * 0.013

0.094 * 0.024

0.154 + 0.020

0.270 * 0.019

69.48

0.436 * 0.054

0.394 + 0.042

0.328 f 0.030

0.429 * 0.020

0.624 ? 0.058

33.90

0.405 + 0.028

0.340 k 0.032

0.294 + 0.026

0.396 f 0.029

0.509 ? 0.047

26.00

0.320 + 0.036

0.281 k 0.020

0.236 k 0.021

0.348 f 0.033

0.448 k 0.037

40.00

0.254 k 0.029

0.218 k 0.012

0.178 f 0.019

0.249 t 0.021

0.394 f 0.029

55.11

0.405 i 0.029

0.369 f 0.037

0.315 r 0.024

0.428 r 0.036

0.564 f 0.044

39.25

0.334 + 0.036

0.284 f 0.029

0.243 f 0.022

0.315 * 0.017

0.490 + 0.039

46.70

0.242 * 0.018

0.205 r 0.017

0.184 f 0.019

0.296 f 0.012

0.348 * 0.025

43.80

0.205 + 0.025

0.174 i 0.015

0.148 * 0.024

0.195 k 0.021

0.325 * 0.036

58.53

(wg of pi/mg

protein

at 37°C)

are mean + SEM of 7 replicates.

347

in a strong positive reaction. Hydrolytic enzymes like acid phosphatase are also presumed to be enclosed within a lipoprotein membrane. This may be one reason why acid phosphatase increases following lethal doses of thiodon. The fall in the activity of alkaline phosphatase from lethal doses of thiodon may be related to a change of pH. Increase and decrease in the activity and acid phosphatase respectively, at sublethal doses of thiodon in different tissues, may be due to uncoupling phosphorylation. The differential action of biocides on acid and alkaline phosphatases in various tissues might be related to factors discussed previously, [8,12]. REFERENCES 1

2 3 ‘4

5

6 7 8 9 10 11 12 13

14 15 16

D.T. Burton, A.H. Jones and J. Cairns, Acute zinc toxicity of Rainbow trout: confirmation of the hypothesis that death is related to tissue hypoxia, J. Fish. Res. Bd. Con. 29 (1972) 1963. C. de Duve, A new group of cytoplasmic particles; Sub-cellular particles, in T. Hayashi (Ed.) Lysosomes, Renald, New York, 1959, p. 128. SK. Konar, Toxicity of heptachlor to aquatic life, J. Wat. Poll. Contam., 42 (1970) 299. S.D. Lewis and W.M. Lewis, The effect of zinc and copper on the osmolarity of blood serum of the channel catfish Ietolurus punctatus, Rofinesque and golden sherier, Notemugorus crysolencos Metchell, Trous. Am. Fish Sot., 100 (1971) 639. S.A. Shaffi, Distribution acid and alkaline phosphatase activity in the normal organs of two freshwater teleosts (C. batrachus (Lim) Barbus stigma (C and U)), Ind. J. Zool., 4 (1977) 24. S.A. Shaffi, Cadmium intoxication on tissue glycogen content in three freshwater teleosts, Curr. Sci., 47 (1978) 868. S.A. Shaffi, Variations in tissue glycogen content serum glucose and lactose level due to copper intoxication in three freshwater teleosts, Cm-r. Sci., 47 (1978) 954. S.A. Shaffi, Biochemical compartmentation of fish tissue, I. Brain energy reserves and its metabolic products, Acta Physiol., 52 (1978) 435. S.A. Shaffi, Effect of zinc intoxication on freshwater fishes, II. Accumulation of metabolic products, Toxicol. Lett., 3 (1979) 319. S.A. Shaffi, The acute toxicity of heptachlor for freshwater fishes, Toxicol. Lett., 4 (1979) 31. S.A. Shaffi, Lead toxicity; biochemical and physiological imbalance in nine freshwater teleosts, Toxicol. Lett., 4 (1979) 155. S.A. Shaffi, Biochemical compartmentation of fish tissues, II. Non-specific phosphomonoesterases in brain, Experientia, 35 (1979) 1280. S.A. Shaffi, Effect of starvation on tissue and serum gluconeogenic enzymes, alkaline phosphatase and tissue glycogen content in H. fossilis Bloch, Acta Physiol., 53 (1979) 509. S.A. Shaffi, The acute industrial effluent toxicity to freshwater fish, Toxicol. Lett., 5 (1980) 183. S.A. Shaffi, Effect of lithium on hexokinase non-specific phosphomonoesterases and ATPase in adult rat brain cien. Cultura (U.S.A.), 32 (1) (1980) 63. S.A. Shaffi, Effect of zinc intoxication on some freshwater fishes, I. Variations in tissue glycogen content, Ann. Limnol., 16 (1980) in press.