Phytochemical
1X70
REFEREUCI:$,.
30. 100 1X mesh. 100 mesh, or 3.5’;” OV-21.5 on V araport Standard injector temp. was 250’ and detector temp. 300 The column temp. was kept isothermal at 170 (OV-17 and OV-1175) and 1YO (OV-17). M‘ V/Sc?fr/w mcth~~l wws. Apparatus and conditions used have been described b? Pettersen and Stokke [IO]. For our purpose a column containing OV-I7 (lO”,,) was selected
I. Pucher. G. W. (lYJ7) J. Bwl. c‘lww. 145, 51 I. 1. Nordal. A. (1943) MC&. 1or. Fuw~. Srlsk. 7. I. A. and Ogncr. G. (106.3) .4clc1 C/IC’III. 3 Bernatek, E:.. No&l. SwIlLI. 17. ‘375. C/WVI. 4. Nor&d, A.. Krogh. A. and Opner. G (1965).4ctc1 Std. 19. I 705. i Hoe. J. E., Winsncs. R.. Nordal. A. and Bcrnatck. IX.(1969) ,-1(trl Chwt. S~ir/itl. 23. 3609. 6. Winsncs. R. and Andrew. M. (lY70) .-~c’Iu (‘/w/x SCUII~. 24. 3J7X. 7, Kringstad. R. and Nordal. 4. (I Y73) .-lcrcr Ci~rw. Scrr~rd. 27 1332. ,j i
Ackrlowl~dyr,rlcrlls~--The authors are Indebted to Dr. F. Wold. Univcrslty of Illinois. Urbana. U.S.A.. for supplying crythronolactc&e. and to Dr. P. M. Boll, Odensr L’nivcrsltet. Odense. Denmark. for homocitric acid lactonc and hibiscus I acid. Our thanks are also due to Dr. L. Eldjarn. Dr. F. Jcllum. anti I-‘. Helland. Institute for Clinical Biochemistrv. L’niversilq of Oslo. for the MS-spectra. The investigation was support&l by grants from Norgcs Almen\~itenskapeli~re Forskningsrad and Norsk t‘armaceutisk Selskap.
TRIGLOCHINTN
Reports
IO.
il. I?.
IN ,4RC’A4 MACULATC:M” ADOLF NAHRSTEDT
Institut
fiir Pharmazeutischc
Biologic
der L’ni\crsit%t
(Eil7lrclcillcJc,lI
I .Irr~~fui
A~71 ~mcdnrwn ist schon lange als Blaustiureproduzierende Pflanze bekannt. I XX4zum ersten Ma1 van Jorisslen erwghnt [ 11 vermutete Greshoff in der Cyanogenese eine Schutzfunktion gegen Insekten in der Spatha nach erfolgter Befruchtung [3]. 1921 berichtete Brunswik [3] iiber die Cyanogenese einer Reihe von Arten aus der Unterfamilic der Aroideae; zuletzt beschgftigte sich Dillemann mit der cyanogenen Suhstanz dieser Pflanze und fand. dalJ ein Glykosid vorliegen muf3 [I]. Unser Untersuchungsmaterial stammt aus den Auwtildern der Rheinebene (Vergleichsexemplar im Bot. Garten der Universitit). Die oberirdischen, jungcn Tcile wurden in Riissigem Stickstoff gesammelt, gefriergetrocknet, pulverisiert und mit siedendem Wasser extrahiert. Die Aufreinigung erfolgte im wesentlichen nach [4]. Kontrolle der einzelnen Schritte auf CN-Gchalt und pc-uberpriifung zcigten. da13 nur eine cyanogcne Vcrbin-
* 7. Mittlg.
iiber die Cyanogenese
der Araccen.
Frcibur_e im Brsp.. German!;
lY75)
dung vorlag. Das nach Lyophilisation erhaltene, gelbliche. nicht kristalline hygroskopische Pulver besitzt glciches Laufverhalten wit Triglochinin [4,9] mit einer Reihe van Fliel3mitteln an Kieselgel, Cellulose und Papier [4.S] und schliefit Triglochininmonomethylester [YJ aus. Das UV-Spektrum in Wasser weist tin i.,,,i,, bei 275 nm auf, das IR-Spcktrum ist identisch mit dem von Triglochinin [4,S]. SBurehydrolyse in 0.5 N HCI liefert nach GC-Untersuchung [7rJ als einzigen Zuckerpartner Glucose. /?-Clucosidztse aus .4locclsitr IIUII’rwr~hku 183. die fiir Triglochinin einr hohe Spezifitgt aufweist. hydrolysiert das vorliegendc Glucosid ebcnso schnell wit Triglochinin. Das (,()-MHzNMR Spektrum des trimethylsilylierten Glucosides ist mit dem von TMS-Triglochinin identisch 14.61; es zcigt. dafi such hier geringe Mengen an Isotriglochinin [9.6] vorlicgcn. wobei ungekl2rt ist, ob lsotriglochinin genuin torliegt. .~lwwr~~~~q Hcrrn Dr. W. tianscl (Plyal-m. Inst.) danke ich fiir die Aufnahmc des NMR-Spektrum. Frau G. Siud/inski fiir technlschc Hilfc.
Phytochemical
5. Sharples, D., Spring, M. S. und Stoker, J. R. (1972) Pkytochemistry 11, 3069. 6. Nahrstedt, A. (1975) Phytochemistry 14. 1339 (im Druck). 7. Bjorndal, H.. Hellerquist, C. G., Lindberg, B. und Svensson, S. (1970) A~yrw. Chern. 643. 8. Hosel, W. und Nahrstedt, A. Hoppe-Seylrrs Z. (im Druck). 9. Ettlinger, M. und Eyjolfsson, R. (1972) J.S.C. Chem. Commun. 572.
LlTERATUR 1. Dillemann, G. (1953) Theses (Sci. Nat.) Paris. 2. Robinson, M. E. (1930) BioI. Rev. 5. 126. 3. Brunswick, H. (1921) Sitzurgsher. Math. Naturwiss. Akad. Wiss. Wim Abt. 1 130. 383. 4. Eyjolfsson, R. (1970) Phytochemistry 9. X54.
Phytochemtstrp.
1975. Vol.
1871
Reports
KI.
14, pp. 1871- 1872 Pergamon Press. Printed m England.
TRITERPENOIDS
OF SAMBUCUS
NIGRA AND S. CANADENSZS*
TAKAO INOUE and KEIKO Hoshi
College
of Pharmacy,
Ebara
(Received 27 January Key Word Index-Samhucus ursolic acid; oleanolic acid;
nigra; S. canadensis; Caprifoliaceae: sitosterol; stigmasterol; campesterol;
in several SumIt is of chemotaxonomic interest to examine triterpenoid components in the leaves of the following two elders. Plant. Sumhucus nigru. L., cultivated in Kyoto Herbal Garden, Takeda Chemical Industries, Ltd., Kyoto, Japan and S. canadensis L., cultivated in Botanical Garden, Faculty of Science, Osaka City University, Osaka, Japan. Previous work. Ursolic acid and oleanolic acid from leaves [7] and cc-amyrin, betulin, xc-amyrone, ursolic acid and oleanolic acid from bark [Z, 31 on triterpenoids of S. nigra. None on triterpenoids of S. cunudensis. Present work. The dried leaves of S. nigru and S. cunadensis were separately extracted with MeOH. The MeOH extracts were concentrated respectively to syrup which was extracted successively with n-hexane, Et20 and hot H20. Constituents of S. nigru. The n-hexane extract was chromatographed on silica gel, affording a mixture of n-alkanes (C,,-C3 i), mp 64-66” (mainly n-nonacosane and n-hentriacontane. IR and GLC), colourless viscous liquid (A), and sitosterol, mp 141-142” (mmp, co-TLC and IR; aceThe occurrence of triterpenoids
bucus species has been reported [l-S].
* Part 3 in the series “Studies on the Constituents bucus species.” For Part 2 see Ref. 181.
of Sam-
SATO
2-4-41, Shindgawa-ku,
Tokyo,
Japan
1975) n-alkanes; quercetin;
palmitic rutin.
acid;
r- and P-amyrin;
tate, mp 12>127”, mmp, co-TLC and IR ; containing small amount of stigmasterol and campesterol, GLC). A showed the properties similar to a mixture of z-amyrin and P-amyrin palmitates previously isolated from leaves of S. sieholdiunu var. miquelli [S]. Hydrolysis of A gave a mixture, mp 182-184”, of a-amyrin and fi-amyrin (7: 3)(coTLC, IR and GLC) and palmitic acid, mp 59-60” (mmp and IR ; containing small amount of myristic, stearic and arachidic acids, GLC of methyl esters). The above data suggested A to be a mixture mainly of r-amyrin and /?-amyrin palmitates. The Et20 extract was chromatographed on Si gel, yielding ursolic acid, mp 278-280” (mmp, co-TLC and IR ; acetate, mp 277-279”, mmp, coTLC and IR). The crude crystals of ursolic acid was found to contain oleanolic acid (GLC of its methyl ester). The Hz0 extract was chromatographed on polyamide and the MeOH eluate was rechromatographed on Si gel, affording quercetin, mp 307” (decomp.) (mmp, co-TLC, co-PPC, IR and UV) and rutin [9], mp 192” (decomp.)(mmp, co-TLC, co-PPC, IR and UV). Constituents of S. cunadensis. The following were identified using chromacompounds tographic and identifiable methods similar to the case of S. nigru. A mixture of n-alkanes (CzsC, 1 (mainly n-nonaconsane), colourless viscous