Useful Constants and Formulas

Useful Constants and Formulas

APPENDIX A Useful Constants and Formulas A.1 Physical constants Constant Symbol Value Boltzmann’s constant k 1.38  1023 J/K Charge of an ele...

56KB Sizes 55 Downloads 164 Views

APPENDIX A

Useful Constants and Formulas

A.1 Physical constants Constant

Symbol

Value

Boltzmann’s constant

k

1.38  1023 J/K

Charge of an electron

q

1.6  1019 C

Thermal voltage at 300K

kT/q

0.026 V

Permittivity of free space

ε0

8.854  1014 F/cm

Permittivity of silicon

εSi

11.68ε0 ¼ 1.03  1012 F/cm

Permittivity of SiO2

εox

3.9ε0 ¼ 3.45  1013 F/cm

Concentration of carriers in intrinsic silicon

ni

1.45  1010 C/cm3

Silicon effective density of states

Nc, Nv

Nc ¼ 3.2  1019 cm3 Nv ¼ 1.8  1019 cm3

Silicon band gap at 300K

Eg

1.12 eV

A.2 Formulas 1 mq2 ni l Resistance: R ¼ r A Carrier concentrations in doped materials:

Resistivity: r ¼

n ¼ Nd eðEd Ef Þ=kT ¼

n2i ; Na

p ¼ Na eðEf Ea Þ=kT ¼

n2i Nd

229

230

Appendix A

Difference between Fermi levels in doped and intrinsic material: jB ¼

kT Na ln q ni

Holeeelectron product in equilibrium: np ¼ n2i ¼ Nc Nv eEg =kT   qDn np0 qDp pn0 Shockley diode characteristic: J ¼ J0 eqV=KT  1 ; J0 ¼ þ Ln Lp εox kT Na MOS capacitor: Cox ¼ ;j ¼ 2jB ¼ 2 ln q tox s;inv ni MOSFET long-channel characteristics: Cutoff Vgs < Vt

Idn ¼ 0

Linear Vds < Vgs  Vt

Idn ¼ kn0

Saturation Vds  Vgs  Vt

Idn ¼

  W 1 2 ðVgs  Vtn ÞVds  Vds L 2

1 0W k ðVgs  Vtn Þ2 2 nL

  kT Cdm Subthreshold swing: S ¼ 2:3 1þ q Cox Rayleigh’s criterion: < ¼ k1 Yield: Y ¼ eAD

Middle voltage: VM

l NA

sffiffiffiffiffiffi bp ðVDD  jVtp jÞ þ Vtn bn sffiffiffiffiffi ¼ bp 1þ bn

Rlin þ Rsat 10VB þ 3Vt ¼ 2 6bVB2 Delay (0e50%): td ¼ 0.69RtCL Effective resistance. Rt ¼

Transition time (10e90%): trf ¼ 2.2RtCL Optimal tapered driver chain: a ¼ e; n ¼ ln 2 Switching energy: Es ¼ CL VDD

Cbig C1

2 Switching power: Ps ¼ fCL VDD ^ ^t 1 R Ideal scaling: ¼ ; ¼ x t x R Thermodynamic noise error probability: Perr ¼ eEb =kT nImax tmax Decoupling capacitance: CD ¼ DV

Appendix A

Elmore delay for arbitrary section sizes: dE ¼

P

ci

1in

1 Elmore delay for uniform wire: dE ¼ rcnðn þ 1Þ 2 CC Crosstalk: DVV ¼ DVA C þ CC Clock period: T  D þ ts þ th tSH S=s e Metastability: PF ¼ T Buffered wire delay:

P 1 j i

rj

1 n n n tbwire ¼ N½ðRb þ rÞc þ ð  1Þð  2Þrc þ ð r þ Rb ÞðCb þ cÞ 2 N N N Bus delay: dbus ¼ k1 ðCL NÞ1=k þ k2 N 2 1 Amdahl’s Law: SðnÞ ¼ P ð1  PÞ þ N Vbl Cline DRAM voltages: ¼ Vline Cline þ Cbit Cache: tav ¼ thitphit þ tmiss(1  phit) ¼ thit[phit þ M(1  phit)] Magnetic disk: Taccess ¼ Tseek þ Trot þ TRW Paging performance: tpage ¼ tres ½ pres þ Md ð1  pres Þ tpage;SSD pres þ Mssd ð1  pres Þ Relative paging performance: ¼ pres þ Mmag ð1  pres Þ tpage;mag Peukart’s Law: In ¼ C G2 DVFS: EDVFS ¼ nC 2 T RTD: ERTD ¼ n[CV2 þ L] Heat sink: TJ ¼ TA þ PQ Fourier’s Law of Heat Conduction: T ¼ PR dQ ¼ hADT, TðtÞ ¼ TA þ ðTð0Þ  TA Þet=t0 Newton’s Law of Cooling: dt Steady-state junction temperature: TJ ¼ TA þ PQ RC temperature model: TðtÞ ¼ ðT0  PRÞet=RC þ PR þ TA Peak-to-peak ratio:

Tp 1  eK ¼ H 1 þ eK

Arrhenius’s equation: r ¼ AeEa =kT Chip life versus temperature: 4th ¼

Rt

1

0 kTðtÞ e

Ea =kTðtÞ

231