Molar absorptivity and A1cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions. VIII

Molar absorptivity and A1cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions. VIII

4NALYTICAL 55, BIOCHEMISTRY 166-192 (1973) Molar Absorptivity and A% at Selected Wavelengths and Visible DONALD Department of Biochemistry. ...

991KB Sizes 0 Downloads 22 Views

.4NALYTICAL

55,

BIOCHEMISTRY

166-192

(1973)

Molar Absorptivity and A% at Selected Wavelengths and

Visible

DONALD Department

of Biochemistry.

Received

Values for Proteins of the Ultraviolet

Regions.

VIII.

%I. KIRSCHENBAUM

College of Medicirle, Downstute Brook&~. :Vew I’oik ll.?n,T March

26, 1973;

accepted

.ipril

II,

Medical

C’entel.,

1973

The ultraviolet absorption characteristics of a protein are useful for a variety of reasons. The quantitation of a specific protein in solution under specified conditions is simplified by spectrophotometric measurement of absorbancy at a specific wavelength and use of either Ai& or e at that wavelength. In conjunction with an amino acid analysis for tyrosine, tryptophan, and cystine, the “purity” of a specific protein may be assessed (1) . The A:‘$,, and L are parameters which characterize a specific protein as are the ratios of t.hesc valt!c>s at different wavelengths, e.g., cytochrome, ceruloplasmin. This paper, the eight.1~ in the series (2, see also 3 and 4), is a compilation of Ai?, and/or E for almost 200 proteins. Most of the data are from journals published within the last 4 years, while a small number are of older vint.age. The enzyme commission numbers (EC) are those supplied by the references cited.

The Lihrarq of the Downstate Medical Ccntcr has bern the major source of all t,he publications examined. The Librarians have given me much help by acquiring the neces.sa,ry books, journals, and article reprints which the library did not have. For this I thank them. During the months of July and August, 1972, I was a Library Reader at the Library of the Marine Biological Laboratory. Woods Hole, Massachusetts. I should like to thank the Librarians for t.heir asssistancc. I should like to thank Miss M. Colindrelrr for typing the reference list, and Mr. Daniel Siegel, a st.udent at Stuyvesant High School. N.Y.C., for his assistance in rechecking the referencw REFEKEKCES 1. U'ETLAVFER, D. B. (1962) Aduan. Prot. Chem. 17, 304. 2. KIRSCHENBAVM. D. M. (1971) Z?d. J. Prot. Res. 3, 109. 157, 237, 329; (1973) Int. J. Prot. Res. 5, 49. Copyright All rights

166 @ 1973 by Academic Prrss, Inc. of rcproduct,ion in any form reserved.

4, 63, 125,

3.

L.. AND KIHSCHENBAI-XT, and Its Compounds (C. A. Intcrsciencc, New Tol,k. 4. J
D. M. (1970) i/l hnalyticxl Chemistry of Nikogen Strculi nnd P. A. Averell, eds.), 11. 635, WileyHxndbook of &ochemistry. Sclcct.ed Data for c4.j 2nd wlit., 1). C-71. Chniwl Ruhbw Co.

168

DOSALD

Molar

Absorptivity Protein

,4cetylcholinesterase (EC 3.1.1.7) Electrophorus

KIRSCHENB.~U~I

TABLE and A:Fm of Proteins s” (x10-4)

elect.ricus

i3-N-Acetyl-D-glucosaminidase (EC 3.2.1.30) Beef spleen Enzyme A Enzyme B Actin Muscle Adenosine 5’-mollophosphnte nucleo.;idase (EC 3.2.2.4) Azotobacter vinelandii

V.

1 in the Ultraviolet A’70 b 1 cm

nrnc

Ref.

21.X 1S.R

2SO 280 2so

1 7 1

17.6 18.2

2SO 2SO

1 1

12.8

273

12.7

27s

2 2

11 08

280

9.73

280

21.4

5.58

and Visible

4

Regions

Comment&

Kjeldahl or Dumas’ Microninhydrine Nit,rogen from amino acid analysis6 DR Dry wt

pH 8, 0.05M triethanolamine-HCl containing 0.0001 hl DTT and 0.001 M EDTA. MW = 57,300 (4)

Adenovirus Hexon Adenylic acid deaminase (EC 3.5.4.6) Rat muscle

14.6

279

5

pH 7, 0 01 nf NaPh

6

Dry

wt, 290,000

Adrenodoxin Bovine adrenal

cortex

Agglutinin Wheat

germ

=

Values cited are per mole of Fe do do do

0.579

276

7

0.641

7 7 7

6.75

320 414 455 276

5.78

414

7 7

10.9

250

8

pH

12

272

8

do

0.496 0.421

MW (6)

7.0, NaPh

Table

0.01

M

continued

PROTEINS:

MOLAR

TABLE

ABSORPTIVITT

AND

169

A;:,,

1 (Contin&) --.

Prot#ein Albumin Bovine

e” (x10-4)

serum

3 03 6 54

Aldose-l-epimerase (Ix 5.1.3.3) Esckcrichia coli Kl2 Allergens, ai.opic Rye grass pollen I-B

II-B

B 11(IEPj K Pool cc Trifidin Ipecac

A IPC-I)

Liquorice Pyrethrum Whole

SL-F dialysate

Kapok

KP-E

Cot,ton

CL-E

Castor bean [CB-lA]SRI Iluman dandruff Horse dandruff Whole dialysate Feathers Caddis fly Pool 2

FE-B

Al% b 1em

HD-E

IlIllC

Ref.

Comment,sd __--

253 278

0 9

10.5

2X0

10

15.0

“SO

11

pH

2.18 10.3

305 2S0

11 11

do pH

0.86 14.1 3.10 14.7 4.75 14.8

305 250 305 280 305 280

11 11 11 11 11 11

7.63 1.05 4.1 1.20 10.5 4.10 11.0

280 305 280 305 280 305 305

11 11 11 11 11 11 11

do PH 7 do do do pH 7, MW = 38,200 (11) pH7 do do do do do do

76.5 69.8 76.2 64.4 20.6 13.0

280 305 2SO 305 2so 30.5

11 11 11 11 11 11

do do do do do

3.38 5.21

250 30.5

11 11

do do

6.40 1.20 58.0 4x. 3

250 305 280 305

11 11 11 11

do do do do

3.5.2 15.5

280 305

11 11

do do

pH 6.2 do

7, RIW = 34,000 (11) 7, MW = 11,000 (11)

d0

Table

continued

170

DONALD

Protein

RI.

KIRSCHENBAT11

t’L ( x 10-4)

nm’

Ref.

s’s0 305 305 305 280 305 2SO

11 11 11 II II 11 11

4.44

305 280

11 11

0.40 84.2 67.0

305 2S0 305

11 11 I1

27s.7

12

Dlt, pH 7.0,50 mivr KPh containing 0.5 m&r DTT

280

13

Dry

Alternaria Trichophytin House dust HE-E Tomato TO-C Cow’s

milk

VM-5 1 95

Eggwhite

Hay

VEI

HH-C

Aminotransferase, Eat liver

Amylase Pirkka

Commentsd do do do do do do pH 7, MW = 36,000 (11) do pH 7, MW = 31,500 (11) do PH 7 do

alanine’

(EC 3.2.1.2) barley

6.S5

5.55

15.0

0.05 RIW (13) Anaphylatoxin Rat serum Apocytochrome c Horse heart Apolipoprotein Glu-II Human plasma

1.91

l.SO Arachiu Arachis h,ypogaca (peanut) Arginase Chicken liver

Ascorbate Cucumis

oxidase sativas

14800

61.6# Asparaginase Erwiniu curotovora

4.1

280

14

9.2

277

15

10.97

276

16

wt, pH 7.0, M NaPh, = 57,200

pH 7.2

pH

8.0, O.Olc/, EDTA, MW 17,380 (16)

10.35

280

16

do

8.8

281.5

17

pH

260

210

18

pH

33

340

18

do

1120s

2x0

19

pH

46.S~

607

19

do

6.1

280

20

pH 7.4

s.2

10.5,O.

=

1 M Ph

7.5, 0.05 Tris-HCl

M

7.0, 0.1 M Ph, MW = 132,000 (19)

-___ Table continued

XTP:

ALIP Phospho1ransferase (I!CC 2.7.4.3) lllm~im

250

530 572 303

:;0 30 20

2so

31

278

32

hnv

= x4,500

Table

(31)

continued

172

DONALD

TABLE Protein Carotenoprot.ein Labidocera acutijrons Cat,alase (EC 1.11.1.6) Human erythrocytes

e= (x10-4)

BI.

liIRSCHENBAUJ1

1 (Continued) Al%lem b

nmC

152

640

33

pH7,

MW = 232,400 (34) do From Fig. 1 of (35)

Ref.

13.2

2’30

34

39.7

17.1 15,s

405 276

34 :35

-h

2RO

36

15.0

250

37

7.26

280

38

Neutral

sol

4.0 5.3

280 2SO

39 40

pH

0.01

8.90

2SO

41

pI1 8, 0.05 M TrisCl, 0.1 iV KC1

2.90

“SO

42

pH 7.2, 0.05 NaKPh

429

43

$1

-i 562.5 41s 562 532

43 43 43 43 43

do do From do do

275 275 413 27S

44 44 45 46

10% do

413 423 526 ,556

4s 4s 4s 4s

Streptomyfs

Colicin I) Eschrrichia coli KlB Colipase Pig pancreas a-Crystallin Crotonase (EC 4.2.1.17) Clostridium acftohutylicum

Cocytotasin I’lat serum b heart

11.4”

2.07” 1.32k 36.6 7.2 3.i Cytochrome br (EC 1.1.2.3) Yeast, Fraction B Fraction C Core, ferri- form ApoCytochrome bb Rat liver oxidized R.educed

0.02>fPh

30.8

Rat liver Cathepsin B’ Bovine spleen Chitinase (EC 3.2.1.14)

Cytochrome Bovine

Commentsd

11.0 6.7 12.0 4.81

11.7 17.1 1 .34 2.56 .__

2.05

6.8,

M Ph

M

7.4, 0.01 M Ph, 0.001 M SDS; values based on pyridine hemechromogen value

Fig.

2 of (43)

HAc

MW = 235,000 (47)

Table

continued

PROTEIKS

Protein Cyt’ochrome Escherichia Reduced

: 1IOLAR

ABSORPTIVITY

TABLE

1 (Contind)

E” (X 10-4)

A’% b 1 cm

173

A:?,,,

AND

nmc

Ref. -

Comment,sd

562 531.5 4’27 564 530 41s 280

49 49 49 49 49 40 40

-1

50 50 50 50 50 50 50 50 50 50 50 .iO 50

pH do do do do do do do do do do do do

642 4’26 438 -m 2x0 210 191

50 50 50 50 50 50 51 51 51

do do do do do do Dry do do

550

52

pEI

bjsJ co/i B 3.16 1.74 IS.01 0.97 1.06 11.74 2.1

Oxidized

Cryptocytochrome

From =

OD6s2/01~2so 1.5 (49)

c

PSCWlOl?lOMlS

den itri~jicn

Aerohir Ferri

Ferro

11s

cells form

form

CO-ferro

form

NO-ferro

form

Anaerobic (*ells Ferri form

Ferro

Cytochrome

form

500 642 426 43s -m 419 .540 570 396 490 -n .570 -1

16.0 1.8 0.6 17.x 17.1 1.S

c

Bovine heart Dithionite Horse

16.0 1 .97 0.65 18.3 17.3 1 97 44. I ‘2 3 1 .SG 17.2 ‘2. 1 2.0 1.0

500

19.5 290 870 reduced

2X.94

heart

17.1 650 1.12 9.05

NO-ferro

form

0.54

280 -O 52s 52s 570

7, dry

wt

wt

6.S, AmPh

Wavelength termined frequency Table

40

rn>f

defrom

continued

17-I

DONALD

TABLE Protein

NO-ferri

& (X10--4)

form

dficrococcus drnilr~/icans NaBHa redklced

KIRSCHENBAU~[

1 (Co1~tL1Zwdj A’%Icm b

Cytvchrome ci Bovine heart Cytochrome c:! Rhodospirillwn Reduced

Oxidized

Cytochrome cc’ Pseudomonas denitri$cans Ferri formn

formq

nmc

Ref.

0.6.5 0.56 0.w 0.67 0.67

540 571 561 j-40 537

.56 56 56 56 56

2.68 2.23

530 “SO

57 57

2.4 0.646 1.382 10.95 0.056 0 946 9.197 2,440 2 o:K3

Oxidized

Ferro

11.

5.50 535 530 417 605 530 40!) 360 250 14

Commentsd d0 do d0 do do

From 01 )aa,,/~~l>zqo = 1.2 (57)

pH 7.5 do d0 do do do do do do

276

59

2.81P

5<50

60

1.711 14. :VJ 3.71n 3 :w 1 05p 11.52 2 !l.PJ 2.47p

521 415 316 272 525 410 357 275

60 60 60 60 60 60 60 60

0.37

635

61

pH 7.3, 0.02M Tris, 0.5 M NaCl

1 02 8.0 3.08 0.71 s.75 9.70

495 400 260 550 434

61 61 61 61 61 61

do

rubrum pH 6.00, NaPh do do do do

0.1 M

d0 d0

do do

do

do do do d0

Table

continued

PROTEIh-S

: ~IOIAIt

ABSORPTIVITY

Protein CO-frrro

fornl~

nmC 1 0.; 1 1s

Ferri

formp

Cytochwme Alcaligcncs Iteduce&

Ref.

61 61

0.6:; (I.!)4 9 no 2.51 2 49 I x2 15 6’2 0.245 0.41

furmn

175

A-t ::,,,

61 61

21 .o

Ferri

.4X1)

til 61 61 61 61

61 61 61

cd fac~calis 1S.Y

21.0

62

pH

6’2 62 63

do

6’7

1X.S

4.95 3.1s 2.94 2.06 1G.S ‘2 X5 15.3

2.76 1.61 14.6 11 .!I

“6.4 105.5 14.0 Il.4

64 64 64 64

4.45 “.s7 2 .65 1 s5 Oxidizedo

15.1 2.12

G” 62 6’2

7, 0.05 M Ph, MW = 90,000 (6”)

d0

do do do do do, vsl\le calculated from c)l)41?j Ol),sn = 1.3 Cci’2)

Cytochlome c5:,(, Hacillus subtilis RedrIced

Oxidized

Spirillum itersonii Reduced’

Oxidieedr Thiobacillus Kedllced Oxidized

novellus 2.5s 13.4 ‘2 9’2

MW do do Cl0

= 10,411

(64)

176

DONALD

TABLE Protein Cytochrome Thiobacillus Reduced

B” (x10-4)

Oxidizedq

Cytochrome cjVz Chronzatium strain D Reduced a! peak Cytochrome csss Petalmia fascia (an alga) Ferro form

form

Afonochrysis alga) Reduced

Cytochrome Bacillus

Reduced

KIRSCHENBAUM

1 (Continued) A’%lem 1,

nmc

Ref.

Comments+

1.96 13.9 15.1

551 416 280

65 65 65

19.91

418

66

pH

1.58 3.08 2.75 12.44 1.03

52:s 551.5 351 408 528

66 66 66 66 66

do do do do do

550

67

MW

= 72,000

(67)

273 293 317.5 41Fi.5 471 521.5 553 269 292 360 409 525

6S 68 68 68 6S 68 68 68 68 68 68 68

MW do do do do do do do do do do do

= 10,500

(68)

2.59

553

69

pH

15.65

416

69

do

3.39 2.0 1.45 1.48 14.36

279 554 550 521 417

63 63 63 63 63

csB1 novellus

Oxidized Cytochrome cj5r.~ Chloropseudomonas ethylica Reducedg

Ferri

51.

lutheri

3.12

2.68 2.19 4.40 19.71 0.38 1.86 2.85 2.68 2.21 3.62 13.53 1.29

4.35

25.5 20.9 41.9 187.5 3.6 17.8 27.1 25.5 21.0 34.5 129.0 12.3

7.0, 0.05 Tris-HCl

M

(an 7, Ph, value based on iron determination

cjjc subtilis

Table continued

PROTEINS:

.\IOLAK

TABLE Protein

177

.A;:,,,

1 (Contin7~d) A’s

t

Nef.

15 :14

417.<5

66

1.71 2.04 4 .n2 3 01 13.20 1.13

*5”3 ;jT,.5 “75 35s 412 b’2 F,

66 66 66 66 66 66

pH 7.0, 0.05 Tris-HCl do do do do do do

555.5 5.23 $20 413 53: 3 555 . .5 565

70 70 70 70 70 70 70

;\IW do do do do do (10

6:!

62

6’9

Dry vit, pH 7, 0 05 M Ph LIW = 65,000 (ti2) do do do do do do do

71 71

Billret Biuret,

72

I)ry wt

1 cm

4.0 2.4 1 .w 10.67

Cyt,ochrorne c::,~(~~O) Chloroir,scutlorrlonns cthylica RedtlcedQ

Oxidizedn

Osidizedq

Cyt,ochrorne c:,:i(:,~~) Alcaliytncs faccalis Redrlceda

)a

Cytochrome P-450 Rat liver microsomes Males Females Cyt8uchrome oxidase (KC 1.9.3.2) I’scudon~0na.s

AKl)

rime

e” ( x 10-4)

Oxidized

Redllced-C(

ABSORPTIVITY

aeruginosa

2.97 1.6s 15 4 Il.:! 1.22 0 .9 o.ss

24.8 14.0 125 93 10.2 7.5 7.0

4.46 3.72

5.7

557 557

2. SY 9s :; 3.73 2 x9 40.0 2.16 36.2

4.44 43 5.7 4.44 61.4 3.32 40.2

523 $20 557 535 416 530 40s

7.96 9.41

18.5

62 B2 69

62 62 62

h1

= 12,051

Tuble

continued

(70)

178

DONALD

TABLE

31.

KlRSCHENBAURi

1 (Continued) -nmc

Protein Cytochrome c peroxidase Pseudomonas Dextranase (EC 3.2.1.11) Aspcrgillus cameas Dihydrofolate reductase (EC 1.5.1.3) Sfrrptom,ycrs fafcium Lactobacillzts

Escherichia w/i, ?viethotrexat,e sistant h’scherichia coli

Elongation fact,or 2 ADP ribosylated Rat liver Aminoethylated

2x0

73

Dry

17.8

2SO

74

Dry

22.0

280

75

23.8

27s 268 340 2SO

76 76 76 77

19.1

280

75

12.0

2SO

78

DK, XIW = 20,300 (75) pH 7 +TPNH’ do ?vIicrobiuret and dry wt, MW = 16,810 (77) pH 7.0, 0.04M KPh do

11 ..5

"SO

79

9.3

27s

SO

7 3 1.0 1.1

272 37S 450

81 51 81

9.7

276

82

9.4 9.9 8.9

280 273 280

62 82 52

1.29

280

83

<5 7 6.1 8.5 Y.85

2'30 277 280 280

54 84 85 86

4.47

re-

T4 phage p-Diphenol osidase (EC 1.10.3.2) Polyporus ~~rrsicolor DNA Polymerase Escherichia coli Large fragment IIPNH-Rubredoxin reductase (EC 1.6.99.4) Pseudomonas olcovorans

Endopolygalacturonase (EC 3.2.1.15) Aspergillus niger Enolase (EC 4.2.1.11) Escherichia coli Rhesus Rabbit

monkey muscle

Commentsd

12.1

6.4s

2.15 2.76 0.72 4

casei

Ref.

7.2

wt, MW 53,500 (73)

=

wt

pH 7.6, 5 M GHCl, 50 mM Tris do pH 3.3,50 rnnf HAc do

DR do MW = 82,000 KjeldahF Table

(85)

continued

PROTEISS:

l\lOL4R

TABLE Protein

ABSORPTIVITY

ASD

179

A;:,,,

1 (Continuctl)

t” ( x lo-‘)

Commentsd

Ref.

17,s

I
(nnnelid

4.84

14.S

OSJ grandis

4 ,()I)

91

Dry

2.56 9.68 1.21 1.1s

!I 1 !)I !I1 !)l

do dU do do

0.0313

92 03 04 94 94 04 94 94 94 94 94 94 94 94 94 !)4

pH7.2, do do do do d0 GHCl, do do do do do

worm)

Eryt.hrocuprein Bovine Apo-

0 ,994 0.211

0. 367 0.330 0.419 0.413 0.3% 0.33u 0.430 0. ‘430 0.540 0.540 0.460 0.790 S.Sl Erythropoietin Human urine Facbr Antihemorrhagic Tritwreswu.s jlinzmiridis (snake) aerrun IXrect lytic (acetate) Hamachatus hao~uchotcs (snake) venom

pH do

wt, lS,500

1\fW (91)

=

10mMPh

pH 5 0

11.7,

GHCl

Table

continued

9.26

Y.8

0.29

96

4.2

1so

DOiYALD

TABLE Protein

e” (x10-4)

Epidermal growth Mice (adult male, albino), submaxillary gland

1.X1

11.

KIRSCHENBAUM

1 (Continued) Aismc b

nmc

Ref.

Commentsd

30.9

2X0

98

pH

5.6, 0.1 M NaAc or water, DR, MW = 6,045 (98)

12.4

2SO

99

8.6

280

100

Dry wt,, MW 48,000 (100)

14.15

283

101

SMurea, NaOH

244 280 288 294 244 280 288 294

1Ola 1Ola 1Ola 1Ola 1Ola 1Ola 1Ola 1Ola

0.1 do do do do do do do

279

102

x Bovine plasma X, activated Bovine plasma

4.1

Fibrin stabilizing Bovine plasma Lutenizing hormone releasing Synthetic [Gly2]-LRF

des Hi&LKF

Fatty acid synthetase Pig liver Ferredoxin Azotobacter vinelanrlii Oxidized, FdI Rhodospirillum Type Type Parsley

1 II

Clostridiunl paateuriawum Monomer

1.22 0.574 0.561 0.410 1.0465 0.5310 0.5177 0 3706 46

N

=

0.2&I

NaOH

2.7

19.2

400

103

MW = 14,140 (103)

2.43 0.85 1.34

27.9 11.7 11.47

385 38.5 255

104 104 105

1.27 1.5 0.98 1.23 0.74 0.921 0.82 0.84 0.97

11.75 13.9 9.09 11.34 6.92 8.65 7.59 7.79 0.90

260 277 294 330 390 4‘22 448 463 690

105 105 105 105 105 105 105 105 105

MW = 8,700 (104) MW = 7,500 (104) MW = 10,800 (105) do do do do do do do do do

106

Dry

r~~brum

2.600

390

-

wt Table

continued

PROTEINS:

XOLAR

TABLE

XRSORPTIVITY

Ai’iD

IS1

n;:r,,

1 (Continwtl)

Protein

1 )imel lyophilized Ferredusirr : NADP Spinach Ferritin Nat live1 Fetuin Commercial

Calf

serum

Fibrin Bovine Human Fibrinogen Bovine 01 chain p chain 7 chain Bovine

3. I’26 1 ,600 1.540 1.617 1 “60

390 390 :i!lo :i!lO :590

106 106 106 106 LOG

1 ,074

456

107

320 260

10X 108

4.5

378

100

4.1 5.3

2is 27s

110 110

16.84

282

111

15

2SO

112

11.8 17.4 20.4 16.51

‘BO 2X0 “80 28”

113 113 113 111

Reduct.ase

2 303

111 171 111 114 114 114 114 114 114 114 115

Human

IhOt

Fragment

E

17.65 11 .s 10.2

2$2 2%) BSO

115 116 116

This value good for native, reduced and carboxymethylsted, osidizrd, and neuraminidase-treated fetuin Wat,er

409;, urea, NaOEl

0.1

0.2

x

M N&H

do

do ~ Ph 27;. HAc pH 6.3, 1 RI NaBl 30(,; lrrea pH 5.45, 6 N GHCI pII 5. S, 2 M KCNS $1 7. 1, 0.055 M NnCl Alkaline lwea

1%

DONALD

Protein Fragment Dog Elephant Sheep Goat Calf Ficin Ficus glabratu Component Flavodoxin Uhot~ospir~~l~~~~ Oxidized

KIRSCHENBAUM

TABLE

1 (Continued)

ea (X10-*)

A:Tmb

nmc

Ref.

20.8 15.S

"SO 280

116 117

0.3

15.7 15.5 15.6 15.9

2x0 2SO 2so

117 117 117 117

do do do do

5.4

280

11s

1.12 1.13 5.42 0.5 0.45 1.09 6.07 3.50

460 376 272 627 588 353 273 276

119 119 119 119 119 119 119 120

2.00 1.0 5.46 0.905

278 464 275 379

120 121 121 121

280

122

Dry

280 280

123 123a

Dry

280

124

pH

280

125

D

G

&I.

Commentsd

M RCl, rorrected for scattering

rxbwm

Semiqninone

ApoDesuljovibrio vulgaris ApoChlorella juscea

IV-Formimino-L-glutamate iminohydrolase Pseudomonas ATCC 11,299b

Formyltetrahydrofolate synt.hetase (EC 6.3.4.3) Clostridium acidi-wici Clostridiurn cylindrosporccm Fructokinase Rat liver

Fructose-1,6-diphosphatase (EC 3.1.3.11) Chicken hluscle

14.7

12.i

3.70 5.3

20

7.4

wt, pH 7.4, 1 mM KPh, 20 mM NaCI, I mM 2-ME

wt and DR

7, 0.12M Ph, data from Fig. 9 of (124)

Table

continued

Protein

nmc

Livet Pig kidney

Kef.

7.4 8 9

Commentsd

$1

s 0, 0.05

11

Tris-HCl I::tbbit IAver

5.1s

(ne(itrsl)

3.70

127

I>ry

wt,

MW (127) hlW = 130,000 (12s)

=

140,000

Liver

(alknline)

11.6

9 7

Fumnrase Pig heart

8 .9 6.1 6.9

1%

260 “SO

muscle

13

19.1

5 3 (;alactothermin t ;:tst~rlrlll Human gast,ric

Dry

7.2, 0.005 Ph, MW = 230,otK~ (130)

132

7.4

380

13::

4.56

24i 278

134


276

1:::i

Iky

5.6 5.6 5.6

276 276 276

10.62

280 2so 280 280 250 280 1 %L

136 137 137 1:<7 137 137

Dry

wYt

13s

Dry

wt

27s 380

I 39

lhy

wt

1 0 1.54

280

140

12.83

5.5 7.9 8.9 8.5 5.7 7.23

5 ‘26

M

1::1

279

juice

I2

$3

wt, NW = 140,000 (129)

MW = 44,000 (13’2) pR 6, X, 0.01 iv Ph

1:;1

wt, corrected for light scattering

140

-__

_____ Tuble

continued

184

DONALD

TABLE 60 (x10-4)

Protein Globulin Thyroxine-binding Human Globulin, 11 S (Glycinin) Soybean seed (Glycine max) Glucagon Commercial

$1.

KIRSCHENBAUJI

1 (Contind A’%1cm b

nmc

Ref.

6.9

2SO

141

8.04

2so

142

“80 260 250 279

143 143 143 144

27s

145

23.0 0.72 1.1 23.0

Pig

i Comment&

Dry

wt

pH 10.0, 0.2 hr Ph do do 0.1 hl glycine/O. I M NaCl/O. 1 h‘ NaOH, pH 10.4

Gluco,se osidase Apop-Glucosidase (EC 3.2.1.21) Aspcrgillus wentii

33.5

19.1

278

146

MW = 170,000 (147)

Glutamate Dehydrogenase Commercial

46.5

-10

279

148

10.7 9.3

280 2x0

150 151

8.9 9.5

280 280

151 152

MW = 56,100 (149) DR Dry wt, pH 7.0, 0. 11 M Ph correrl ed for do, light scattering pH 7.6, M/l5 KNaPh

Gltttamate synthase IEC 1.4.1.X) Eschcrichia coli

12.9

278

153

Dry

Glutaminase-Asparaginase Achronlobactcracae

10.2

280

154

pH 7.2, NaPh

13.5

279

155

pH

6.5

2x0

156

Lowrye, 0.005 do do

19.2

Clostridkum SB4 Bovine liver

Ghttamine synthase (EC 6.3.1.2) Pig brain

51

Glutamine transaminase Rat liver

3.26 0.78 r-Glutamylcyteine thet,ase Rat kidney

260 415

156 156

280

157

wt, Kjeldahi, and ashe 0.01

7.2, 370,000

1\1

MW (155)

M

pH 7.2, KPh

syn10.6

11.5

Lowry”, MW = 92,000 (157) Table

=

continued

PROTEINS:

.___ Protein (;hltat~hiorre reductase (EC 1.6.4.2) Rice embryos

.-

NOLAB TABLE

ABSORPTIVITY

__--

1%

is;Tm

.4ND

1 (Continud)

tn (X 10-9

A’70 trm b

9.51

9.1

nm’

Ref.

275

15x

Comment

LZW

id

= 104,000

(158)

18.3 1 .09 1.10 1.16 Glut,en Wheat, &&[4Pyridylethyl]Acr,vlonit.rile derivative Glywraldehyde-3-phosphate dehydrogenase Rabbit mrwle I)enat,wed FurylacryloylChicken heart

17.6 10.5

250

15s

370

10.6

379 463

15s 15s

11.1 6.20 7.07

276 275

6.58

276

10.3 3 0 3 0 14

2x0 337

10.2

344 280

158

do do do do

159

pH 2, 0.111 N HCl

159 159

d0

do

160 161 161

162

MW

= 137,600

(162) ApoEscherichia

coli

GlyceroWphosphate dehydrogenase l&t, liver Fraction 1 enzyme

5.2 10

280

162

14.4

2so

163

pH

8, 20 mat TrisCl. 2 rnM EDTA

11.0

18.3

280

164

pII

7.2, 0.1 M Ph, RIW = 60,01)0

4.0

6.7

280

164

do

3.592

280

2.83~

2SO

165 165

(164) Fract.ion 2 enzyme Chicken Liver Muscle C:lpco-or-lactslbunlin Bovine milk Glycolic acid oxidase Spinach Glycoprot.ein Tamm-Howfall IIuman urine

17.7

280

7.7

167

Calcd from Fig. 3 of (167), pH 8.3

Cnlcd from of (16xj

13

277

l6S

10.8 9.5

277

lti9

277 277

170

6 M 6HCl

170

Water

9.4

Table

Fig.

continued

1

186

DOXhLl,

TABLE Protein Acceptor of glycosyl transferase Rat intestinal mucosa Glycoprotein (a-globulin) Mouse Plxsma Tumor Glyroprotein, al-acid Chimpanzee plasma Human Liver Blood Variant pZ 3.0 Variant pf 3.2 Variant’ pZ 3.4 Pool a&lvcoprotein, hist.idioepith 3.6 S Human serum WA-pl-Glycoprotein Human plasma as-Glycoprotein, 8 S Human serum p-Glycoprotein, glycinerich Human aerrlm p,-Glycoprot,ein, sialic acid free Human plasma

,‘Z ( x 10-h)

RI.

KIRSCHESBAUJI

1 iCoratinzrd 11% b i iPIn

nmC

Ref.

4.8

27S

171

8.8

278 27s

172 172

Ii.53

275

173

0.16

279

174

9.38 9.31 9.32 9.33

27x 27s 278 275

175 17.5 175 175

5.85

280

176

11.5

278

177

10.0

280

178

6.2

2SO

170

11.2

27s

180

11.6

4.0

Comment&

MW = 43,600 (174)

pH 6, 0.1 .\I NaCl

PH 7

a e is the molar absorptivity with units of K’ cm-l and is either t.he value reporled in the reference cit,ed or calculated from the AjFm valrle and the molecular weight. bAfz,l is the absorption for a lyc solution in a l-cm cuvet, and is either ihe vahle reported in t.he reference cited or calculated from the 6 aud the molertllar weight.. The weight, MW, is 1Oe = (A:t,)(RIW). relationship between c, AiF& and molecular c Refers t,o the wavelength cited and may not be the peak of the absorpt,ion band. d Abbreviat.ions used: DTT, dithiothreitol; EDTA, et.hylenediamine t,etraacetic acid; Ph, phosphate; do, same as above; Tris, tris(hydroxymethyl)aminomethane; HAc, acet.ic acid; GHCl, guanidine hydrochloride; AC, acetate; SDS, sodium dodecyl sulfate; concent,ra,tiolls: DK, 2-Me, 2-mercaptoet,hanol. Methods for determining protein differential refractomet,ry; Dry wt,, dry weight,; AA, amino acid analysis: Biruet, biuret method: Lowry, Lowry method. 6 Met.hods for det.ermining nitrogen concent,ration ilr order to determine protein concent,ratiou. 1 Pyridoxal or pyridosamine form.

PHOTElNS

: \IOL.4R

ABSORPTlVITY

AiYU

A::,,

IS7

1ss 20.

DONALD CAMMACK,

126,

JX.

A.,

MARLBOROUGH,

11.

KIRSCHENBAUM

D.

I., AND

MILLER,

D.

S. (1972)

Biochem.

J.

361.

21. LABOURUUR, P., LANGLOIS, C., LABROUSSE, M., BOUDON, M., EMERAUD, J., SAMAIN, J. F., AGERON. M., AND DUMESNIL, Y. (1971) Biochimie 53, 1147. 22. SCAND~RRA. B., AND CANNELLA, c. (1972) Eur. J. Biochem. 26, 196. 23. D’ANIELLO. A., AND ROCCA, E. (1972) Comp. Biochem. Physiol. B 41, 625. 24. F.~LCOZ-HELLY, F., JAh’IN, J., s.4~~1, J. C., VERON. M., TRUFFA-BACHI. P., AND COHEN, G. N. (1972) Eur. J. Biochem. 28, 507. 25. THUMA, E., SCIIIRMER, R. H., AND SCIXIRMER, I. (1972) Biochim. Biophus. dcta 268, 81. 26. TWEEDIE, J. W., AND SEGEL, I. H. (1971) Prep. B&hem. 1, 91. 27. WOLFF, D. J., AND SIEGEL, F. L. (1972) J. Biol. Chem. 247, 4180. 28. VIRDEN, R. (1972) Biochem. J. 127, 503. 29. BRUNDELL, J., FALBRRING, S. O., AND NYMAN. P. 0. (1972) Biochim. Biophys. Acta 284, 311. 30. KANG, E. P., STORM, C. B., AND CARSON, F. W. 11972) Biochim. Biophys. Res. Commux. 49, 621. 31. IHLE, J. N., AND DIRE, L. S., III (1972) J. Viol. Chem. 247, 5034. 32. JOHANSEN. J. J., LIVINGSTON, D. M., AND T~ALLEE, B. I,. (1972) Biochemistry 11, 25S4. 33. ZAGALSKY, P. F., AND HERRING, P. J. (1972) Camp. B&hem. Physiol. B 41, 397. 34. BONAVENTORA, J., SCHROEDER, W. A., AND FANG, S. (1972) Arch. Biochem. Biophys. 150, 606. 35. PRICE, V. G., STERLING, W. R., TARANMLA, V. A., HARTLEY, R. W., JR., AND RECHCIGL, M., JR. (1962) J. Biol. Chem. 237, 3468. 36. OTTO, I<., AND BHAKDI, S. (1969) Hoppedeyler’s 2. Physiol. Chem. 350, 1577. 37. SKUJINS, J.. PUKITE, A., AND MCLAREN, A. D. (1970) Enzymologia 39, 353. 38. TIRZMIS, Ii. (1972) J. Bacterial. 109, 12. 39. MAYLIE, M., CHARLES, M., GACHE, C., AND DESNT~ELLE, P. (1971) B&him. Biophys. Acta 229, 286. 40. BARTH, G., BUNNENBERG. E., ANII DJERASSI, C. (1972) Anal. Biochem. 48, 471. 41. WATERSON. R. M., CASTELLINO, F. J.. Hass, G. M., AND HILL, R. L. (1972) J. Biol. Chem. 247, 5266. 42. WISSLER, J. (1972) Eur. J. Immunol. 2, 84. 43. GOLDBERGER. R., SMITH, A. L., TISDALE, H., AND BO;MSTEIN, R. (1961) d. Biol. Chem. 23’6, 2788. 44. LEDERER, F.. AND SIMON, A. M. (1971) Eur. J. Biochem. 20, 469. 45. GROUDINSKY, 0. (1971) Eur. J. B&hem. 18, 480. 46. ME~EL-NINIO, M., PAJOT, P., AND LABE~RIE, F. (1971) Biochimie 53, 35. 47. MONTEILHET, C.. AND RISLER, J. L. (1970) Eur. J. Biochem. 12, 165. 46. STRITTMATTER, P., AND VELICK. S. F. (1956) J. BioZ. Chem. 221, 253. 49. IT.4G.4KI. E., .~ND HAGER, L. P. (1966) 1. Biol. Chem. 241, 3687. 50. IWASAKI, H., AND SHIDARA, S. (1969) Plurd Cell Physiol. 10, 291. 51. WEBSTER, G. C. (1970) Biochim. Biophys. Acta 207, 371. 52. FLATMARK, T., AND SLETTEN, K. (1968) J. Biol. Chem. 243, 1623. 53. MAYER, M. M., .~ND MILLER, J. A. (1970) Anal. Biochem. 36, 91. 54. HERSKOVITS, T. T. (1969) Arch. Biochem. Biophys. 130, 19. 55. HERSKOVITS, T. T., JAILLET, H., AND GADEGBEPU, B. (1970) J. Biol. C&m. ~5, 4544.

PHOTEINS:

MOL,41t

~4BSOKPTlVITY

ANI)

A:2r,,

189

190

DOKALD

93.

\17~~~~.

94.

J$7~~~~. u.. ~‘OELTER.

U.. AND

95. I!~PAD.P, 3’i.I 96.

.J.,

T..

Acta

A.,

Fed.

S~~I~AI~IRO,

285,

M.,

Eur.

Biuchem.

8oc. Letters

17, X.

M.

S.:

OIts~~1i.4,

A..

ANI)

(1972) A..

Bid&n.

Biophys.

MUIIAT,~,

R.

.\NI)

dctu

G..

285,

Biochim.

(1972)

414.

MITCHELL.

Ii., R.,

~~OIWO.

AND

S., I)IGVRIES,

Biochem. H.,

I,EGAZ,

M.,

W.

AND

CoO4.

M.,

HERGER,

AND

(1968)

A.

COHEN.

S.

Biochim.

(1972)

Biophys.

J. Biol.

A&n

C’hcrra.

247,

I).\vIE, I?. (1972) Biochemistry 11, 4882. P. CT. (1972) J. Bid. Chenz. 247, 7735. AND KO;VIWI, K. (1972) BioclGm. &ophys. Acta 271, 363. &I. w., I
MoNAHAN, I)l:TLER,

H. J. (1971)

HARTMAXS,

IANGTON.

O.MORI&TOH,

97. ALOOF-HIRSCH, 154, 53. 98. ‘TAYLOR, J. 5928. 99. Fu~r~c~n-a, 100. RADUJFFE. 101. TAI~GI. T.,

102.

KIHSCHENBAUM

BARTH, G.. I)JEI~AMI~ C., HARTMANN. H. J.! ~
Biophys.

101a.

I\I.

AXD

BARTON,

31.

.I.,

d.,

~
\rO~EL.

H.,

J~ALDvOGEL,

c;..

AND

~RELOG,

T’.

(1971) Ezc~.. J. Biochent. 103. ‘Ilow. I). C.. AND ARNON, 104.

105. 106. 107. 108. 109. 110. 111. 112. 113.

22, 203. I). I. (1972) J. Viol. Chem. 247, 4514. 13. B., .~ND ARNON, D. I. (1972) Biochim. S~NMWAN. K. T.. BUCHANAN. Biophys. Acta 256, 477. FEE. J. A., AND PALMER, G. (1971) Uiochivr. Biophys. Actn 245, 175. GERSONDE. K., THITTELWTZ, E.. SCIILAA~, 11. E., AXD %BEL, H. H. (1971) Eur. J. Biochem. 22, 57. _\TASAMURA, S., AND 1iIivrx.4, T. (1971) J. Viol. C’hem. 246, 6235. .J.ACWIN, R. J., MT-NR~, 11. J.. ASD KORNER. A. (1964) Biochim. Biophys. Acta 91, 666. ~luRIl.ir, X. C!., OIHAWA, Ii., AA-I) KAY. C. M. (1969) Biochim. Biophys. Actn 175, 331. C;RAIL4M. E. R. B. (1966) in Glycoproteins (Gottscldk, A., ed.), 11. 361, Elsevicr, Amsterdnm. B~oiwsac~i, B. (1958) Ark. Kemi 12, 99. Prsaso, J. J., FINL.~E.~ON, J. S.. PEYTON. M. P.. AND SA~AI. T. (1971) Proc. Nat. Acad. Sci. L:SA 68, 770. ~~~LLWITZER,

Ii.,

Biochem. 114. GOLLWITZER. Biophys. 115.

K.4.z.1~.

Exp. 116.

H.,

ilctn

I,.

R.,

BIWKER,

U..

.~ND

V.

H. E., HORMMANN,

KARNSS,

207,

A., AIWSEL.

Biol.

MARDER.

TIMPL,

FCRTHMAYR,

H.

(1972)

Eur.

J.

28, 497.

Med.

H., AND

KUHN,

K.

(1970)

Biochem.

445. 0. P., AND

S., MILLER,

113,

TOCANTINS,

I,.

M.

(1963)

Proc.

Sot.

Chem.

247,

R. Accrd.

Sci.

989.

J., BUDZYN~KI,

A.

Z.,

AND

JAWS,

H.

1,. (1972)

J. Biol.

4775. 117.

BION.

s..

MAR(:T-IWE.

c;.. HUDRY.

c:.,

4x1

CHAGNIEL,

G.

(1971)

D 273, 901. 118. WHITAE(ER, J. R. (1969) Biochemistry 8, 1896. 119. C~SANOVICH, M. A., AND EDMONDSOS. I>. E. (1971) Bichem. Commm. 45, 327. 120. D’ANNA, J.: JR.. .~ND TOLLIN, G. (1972) BiochemGtry 11, 1073.

c.

Puris

Biophys.

Res.