1. Quant. Spectrosc. Radiat. Transfer VoL 27, No. I, pp. 39-53, 1982
0022.-4073]821010039-15503.0010
Printed in Great Britain.
Pergamon Press Ltd.
M O L A R A B S O R P T I V I T Y A N D A.,-,I ~l cr~ V A L U E S F O R P R O T E I N S AT S E L E C T E D W A V E L E N G T H S OF T H E U L T R A V I O L E T AND VISIBLE REGIONS--XXI DONALDM. KIRSCHENBAUMt Department of Biochemistry, College of Medicine, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, U.S.A. (Received May 27, 1981) Abstract-A table of molar absorptivity and At~cm values for about 200 proteins and protein derivatives is given. The conditions used to obtain these values, the sources of the proteins, and references to the original literature are also given. INTRODUCTION
The molar absorptivity and Al~m values for more than 200 protein and protein derivatives and the conditions under which these values were obtained are listed in Table 1. The sources of the proteins and references to the original literature are also given. Additional pertinent information can be found in the footnotes to Table 1. The method used to compile these data has been described by Kirschenbaum? This paper is part of a continuing compilation of absorption characteristics of proteins? Acknowledgements--The Library of the Downstate Medical Center college of Medicine has been the major source of all publications examined. What was not available in the library was obtained for me from other libraries by its excellent interlibrary loan service. I should like to thank all of the librarians involved for their most useful and continuing assistance. During the summers of 1971-7and 1977-80, I was a Library Reader at the Library of the Marine Biolobical Laboratory, Woods Hole, Mass, From February to July 1976, I used the Library of the University of Sussex, Falmer, Brighton, England. I thank the Librarians of each of these libraries for their kind assistance I thank Mr. Edward Becker for assisting me with photocopying, Mr. Noah Eric Aroll and Mr. Zvi Aroll for general assistance, and Ms. G. Hawkins for typing the references list. This compilation project was supported in part by NIH Grant No. 1 R01 LM 03591 awarded by the National Library of Medicine. REFERENCES 1. D. M. Kirschenbaum, J. Chem. Inform. Comput. Sci. 20, 152 (1980). 2. D. M. Kirschenbaum, Int. J. Biochem. 11,487 (1980).
tFaculty Exchange Scholar-Suny. Table 1. Molar absorptivity, e, and a x~ M10 -4
Protein
A1 l%bcm
A J~ ic m
nmC
values for proteins Ref.
Comments
Inhibitor c~P-dependent
protein kinase and phosphodiesterase 1.45
7.6
280
1
0.i mM EDTA,
cortex
9.6
278
2
0.04 M Tris-HCI,
Rat testis
pH 7.
cAMp phosphodiesterase Bovine cerebral
pH 8, containing 1 mM MgCl2, NaCI,
0.i M
0.1 mM DTT;
10% glycerol.
39
AA.
Donald M. Kirschenbaum
40
Table 1. (Contd) c Ma x l0 -4
Protein
Inhibitor-l,
Al%b
inhibits phosphorylated
Rabbit skeletal muscle Chymotrypsin
Ref.
Comments
phosphorylase
__e
phosphatase
3
inhibitor
Human plasma Silkworm
nm c
1 cm
6.2
280
4
Interf.
7.9
276
5
MW = 7,000. Fig.
6
pH 7.6; data from
(Bombys mori)
Hemolymph
0.5600
Potato
9.32
280
Fig. Proteinase
7f
3 f .
inhibitor
Human plasma
5.30
2.81
280
7
Interf. MW = 53,000.
Canine plasma
5.82
280
8
4.30
280
9
MW = 13,000.
8.7
279
i0
pH 7.5
3-Nitrotyr 41- 0.4100
428
ii
pH 9.
0.2800
360
ii
pH 4.5.
Vicia angustifolia segetalis
L. vat
Koch 0.5590
Streptomyces antifibrinol~ticus Yeast Proteinase
Stre~tom~ces
B inhibitor,
albo~riseolus
Subtilisln
IB2
S-3253
inhiblto~
0.95
8.22
276
12
8.10
280
12
8.29
276
13
MW = 11,500.
5.0
280
14
AA, LS.
280
15
0.05 M Tris-HCl,
Trypsin inhibitor Human serum Corn,
opaque-2
20
0.2 M NaC1, pH 7.5. Field bean
(Dolichos
lablab)
7.58
280
16
276
17
Insulin Rat
10.6
0.025 M Tris-HCl, pH 7.75; dry wt.
Isocitrate
dehydrogenase,
NADP dependent
(EC 1.1.1.42)
Human heart
5.67
10.7
280
18
MW = 53,000.
Beef liver
6.2
12.9
278
19
MW = 48,000;
20
Dry wt.
Isopentenyl pyrophosphate
isomerase
Pig liver Kinaae,
protein,
Kininogen,
(EC 5.3.3.2)
9.1 cAMP-dependent,
Bovine heart
refr.
regulatory
280 subunit
6.0
280
21
7.01
280
22
high molecular weight
Human plasma
0.i M A C pH 6.5.
buffer,
Proteins, molar absorptivity, AI~,~ values
41
Table 1. (Contd) a x~10-4
Protein
Al%b icm
nmC
Re fo
Comments
K
Laccase
(EC 1.10.3.2)
Fungal
(Polysporus
versicolor) Tree
0.49
610
23
0.57
614
23
278
24
20 m M N a P h ,
280
25
:4W = 64,800.
280
26
Dry wt.
1.14
450
27
0.02 M NaPh, pH 7.0.
1.28
450
27
0.1 M NaPh, pH 6.0.
0.90
450
27
0.02 M Mes/NaOH,
(Rhus
vernicifera) Vietnamese
lacquer tree
s uccedanea)
(Rhus
12.0
pH 5.5.
Data from Fig. Neuros~ora
crassa
9.07
Lactate dehydrogenase
if .
(EC 1.1.1.27)
Human heart Lactate oxidase
14.0
13.2 (EC 1.13.12.4)
Mycobacterium sme~mati9
pH 6.0. 1.07
450
27
0.1 M Tris-Ac, pH 7.8.
Lactoferrin,
fragment
from peptic digestion
Human milk
0.5
465
2B
ll.l
280
28
0.2 M KCI.
278
29
0.1 M AmB, pH 7.7;
Lectin Chinook
salmon ova
(Oncorhynchus
tshaw~tscha)
7.8
dry wt. Ricinus communis Clam
seeds
(Tridacna maxima)
13.43
280
30
24.4
280
31
0.05 M Tris-HCl, 0.1 M KCI, pH 7.0; refr.
Maclura pomifera
seeds
15.7
280
32
Leghemoglobin Kidney beans Ferrous
Ferrous-02
(Phaseolus vul@aris
556
33
Based on heme con.
9.84
427
33
do
1.47
574
33
do
1.44
539
33
do
409
33
do
1.38
563
33
do
1.40
538
33
do
417
33
do
13.4 Ferrous-CO
vat. Kaiser Wilhelm)
1.34
21.0
Donald M. Kirschenbaum
42
Table 1. (Contd) a 6M x l0 -4
Protein
A l%b 1 cm
nmC
Comments
Ref.
m,,
Ferric-H20
0.312
625
33
do; pH 6.0.
1.01
532
33
do
404.5
33
do
572
33
14.2 Ferric-OH-
1.12
Based on heme con.~ pH i0.I.
1.22
539
33
do
413
33
do
0.997
573
33
Based on heme
1.26
539
33
do
414.5
33
do
538
33
do
417
33
do
533
33
do
411
33
do
1.10
557
33
Based on heme con q
1.29
528
33
do
407.5
33
do
0.595
622
33
Based on heme con.
0.504
570
33
do
0.908
494
33
do
403.5
11.0 Ferric-N 3
12.3 Ferric-CN
1.16 13.0
Ferric-Imidazole
1.28 13.8
con.
FerricNicotinate
pH 6.0.
12.1 Ferric-Acetate
16.9 Ferric-F
33
do
0.902
605
33
do
0.700
576
33
do
0.672
526
33
do
0.956 17.0 Leucine dehydrogenase Bacillus
33
do
33
do
280
34
Dry wt.
280
35
0.01 M KPh, pH 7.0;
(EC 1.4.1.9)
s~haericus
L-Leucine-~-ketoglutarate Acetobacter
485 400
subox[dans
9.18 transaminase 10.35
data from Fig. Lipase
4 f.
(EC 3.1.i.3)
Pseudomonas
fluorescens
11.05
280
36
7.5
280
37
Lipovitellin Xeno~us
laevis egg y o l k
0.25 M Tris-HCl containing NaCI,
0.25 M
pH 7.5;
dry wt.
Proteins, molar absorptivity, A~~cm values
43
Table 1. (Contd) a SM x 10 -4
Protein
Al%b i em
nm
c
6.1
280
38
280
39
Dry wt.
Re f.
Comments
a.
Luciferase Deep-sea
shrimp
(Oplophorus
~rgc~lorostris) Lysine aminotransferase Flavobacterium liquidum) Lysine:tRNA
(EC 2.6.1.36)
lutescens
(Achromobacter
IFO 3084
ligase
7.35
(EC 6.1.1.6)
Brewer's yeast
9.25
280
40
0.05 M KPh, pH 7.0.
Escherichia
6.66
280
40
do
Lysozyme
coli
(EC 3.2.1.17)
Mink Spleen
6.9
275
41
Kidney
6.9
275
41
Liver
5.0
275
41
27.0
nc g
42
Tortoise
(Trion~x ~an@eticus
Cuvier)
Dry wt.
Phage T4 Wild type
2.42
280
43
eRl
2.09
280
43
eRRR
1.38
278
43
280
44
280
45
D-Mannitol
dehydrogenase
Leuconostoc mesenteroides ~4ethanol dehydrogenase H[phomicrobium
4.14
Dry wt.
(EC 1.i.99.8)
X
9.6
0.02 M KPh, pH 7.0. Data from Fig.
i f.
Methylomonas methanica
5.67
9.45
275
46
50 mM Ph, pH 7.0. Data from Fig.
4 f.
MW = 60,000. Meth~lococcus
ca~sulatus
Soluble
45.8
280
47
Data from Fig.
3.0
350
47
do
66.7
280
47
do
4.2
250
47
do
4.72
280
48
pH 7.0.
1.52
280
49
pH 7.0.
Solubilized
•l-Microglobulin Human urine ~2-Microglobulin Human urine
8 f.
Donald M. Kirschenbaum
44
Table 1. (Contd) a
Protein
~M x 10 -4
A l%b 1 cm
nm c
Ref.
50
Comments
|
Myoglobin Bovine muscle
MbIA-CO
1.51
578
1.31
560
50
1.73
542
50
0.85
502
50
18.4 MbIB-CO
423
50
1.41
578
50
1.23
560
50
1.61
542
50
0.85
502
50
423
50
578
50
16.6 MblI-CO
1.55 1.28
560
50
1.76
542
50
0.73
502
50
423
50 51
pH 6.0, Ph.
20.9 Mb
1.38
560
MbO 2
1.44
580
51
do
1.44
542
51
do
1.22
578
51
do
1.46
540
51
do
0.39
630
51
do
Mb
1.29
556
52
Me tMb
0.94
500
52
0.36
630
52
1.48
541
52
1.29
578
52
1.13
540
52
1.29
555
52
0.98
500
52
0.37
630
52
MbCO
MetMb Porcine
MbCO
MetMbCN Horse Mb MetMb
MbCO
1.48
540
52
1.29
577
52
1.33 h
540
53
Bus[con contrarium Mb-l-CO
AA
Proteins, molar absorptivity, A]~. values Table 1.
CaM
Protein
Bus~con
x 10 -4
45
(Contd)
A l%b 1 cm
n~ c
Re f.
540
54
AA.
Comments
c a r i c u m Gmelin
MbCO
1.42 h 1.36 h 18.3 h 3.64 h
571.5
54
do
420
54
do
280
54
do
Myosin Light chains Scallop
(Aequipecten
irradians)
Regulatory
2.0
280
55
Thiol
5.5
280
55
5.0
280
55
4.6
280
55
4.6
280
55
5.5
280
56
55
230
56
21
236
57
280
57
6O
230
57
25
236
57
280
57
62
230
57
26
236
57
280
57
59
2~
57
24
236
57
7.4
280
57
59
230
57
24
H a r d shell clam
(Mercenaria
mercenaria) Surf c l a m
(Spisula
solidissima) Squid
(Loligo pealei)
Rabbit,
DTNB
HMM
6.0
EDTA-SI
8.1 Sg-Sl
8.3 SI-AI
SI-A2
236
57
7.5
280
57
LCI
4.5
280
58
LC2
5.4
280
58
DTNB chain.
LC3
3.5
280
58
Alkali chain.
11.0
280
59
MW = 6600.
Carp white muscle Alkali chain-
Neurotoxins Sea snake
(Astrotia stokesii)
Toxin a
0.7260
Toxin b
1.39
18.4
280
59
MW = 7580.
Toxin c
1.55
20.5
280
59
MW = 7787.
274
60
Dry wt.
2-Nitropropane
dioxygenase
Hansenula mrakii
(EC 1.13.11) 9.8
46
Donald M. Kirschenbaum Table 1. (Contd) ~ Ma x 10 -4
Protein
Nucleotide
pyrophosphatase
Bakers'
Al%b
nm c
Ref.
Comments
1 cm
(EC 3.6.1.9)
yeast
15.8
280
61
Ovalbumin Commercial
3.05
280
62
32% succinylated
2.97
280
62
90% butyrated
2.86
280
62
92% succinylated
2.82
280
62
95% aeetylated
2.80
280
62
9.0
278
63
3.02
277
64
Papain,
dehydroserine-25
Papain,
modified
Paramyosin Earthworm
(Lumbricus
terrestris)
0.06 M KPh, KC1,
0.6 M
0.0005 M DTT,
pH 7.4. Parvalbumin Carp muscle
(Cyprinus car~io)
Band 3
1.80
259
65
Band 5
1.80
259
65
Band 2
2.00
259
65
1.84
259
66
1.57
259
66
280
67
Dry wt.
550
67
Value per Fe.
280
67
Dry wt.
550
67
Value per Fe.
Fish muscle
(Chondrostoma
nasus L.)
Phosphatase,
Fe containing
Beef spleen
15.9 0.204
Pig allantoic
14.2
fluid 0.200
Phosphoenolpyruvate Crassulacean
carboxylase
plant
(EC 4.1.1.31)
(Bryo~h~llum
Hamet et Perrier Rat liver cytosol
11.9
Phosphoenolpyruvate-dependent Enzyme
0.1 N NaOH.
fedtschenkoi)
11.6
280
68
16.6
280
69
sugar phosphotransferase
MW = 72,000;
N.
system
I, Mycoplasma
ca~ricolum
10.5
280
70
MW = 220,000.
Thermus X-I
6.0
280
71
Refr.
C l o s t r i d i u m ~asteurianum
4.8
290
72
0.1 N NaOH.
3.9
275
72
Phosphofructokinase
23.1 (EC 2.7.1.11)
0.05 M KPh, pH 7.0~ dry wt. Data from Fig.
5 f.
Proteins, molar absorptivity,
Ma x 10 -4
m
values
47
(Contd)
Table 1. Protein
A r *~ c m
Al%b 1 cm
nmC
Ref.
Comments I
,
D-3-Phosphoglycerate
dehydrogenase
Chicken liver Phosphoglycerate
(EC i.i.i.95) 5.3
278
73
6.8
280
74
12.3
280
75
13.0
280
76
13.0
280
76
13.2
280
77
12.4
280
78
11.4
280
79
kinase
Human skeletal muscle B form
Dry wt.
~ - P h o s p h o l i p a s e A2 Porcine pancreas Z ymogen Phospholipase
A2
Porcine pancreas E-Amidinated Phosphorylase
B (monomeric)
Rabbit muscle Phosphorylase
b, glycogen
Chicken muscle
(M-Line protein) ll. 2
Refr. and N.
Phosphothioredoxin Escherichia
coli
Poly (adenosine diphosphate
ribose)
polymerase
Bovine thymus
7.4
280
80
50 mM Tris-HCl, 1 mM EDTA, NAN3,
1 mM
1 mM GSH,
0.5 mM DTT, pH 7.4. Prealbumin Chicken
serum 9.5
PAl
15.81
280
81
20 m M N a P h , containing NaC1.
pH 7.6 0.2 M
MW = 60,000.
PA2
12.5
25.56
280
81
do.
MW = 49,000.
PA3
10.8
22
280
81
do.
MW = 49,000.
10.4
280
82
13.0
280
82
8.4
6.8
260
83
MW = 124,000.
14.9
12.0
Profiiactin Calf spleen Prolifin Calf spleen Proline dehydrogenase Escherichia
Protoaphin
dehydratase
Wooly aphid Hausmann)
QSRTVol.27,No. I--D
coli
280
83
do
1.2
0.97
380
83
do
0.86
0.69
450
83
do
280
84
MW = 120,000.
(cyclising)
(Eriosoma lanigerum 18.0
15.0
Donald M. Kirschenbaum
48
Table h (Contd) a ZM x 10 -4
Protein
A 1% 1 cm
nm c
Ref.
Comments
Protease Crotalus
adamanteus
venom Monascus
kaolian~
2.4
8.8
280
85
MW = 23,749.
6.4
1.89
280
86
MW = 34,000.
10.8
280
87
MW = 35,000.
9
280
88
Pseudomonas malto~hilia Stre~tom[ces
3.8
~riseus
PNPAiHydrolase
I
PNPAiHydrolase Elastase-like
Stre~tom~ces
II enzyme
13
280
88
I
10.5
280
89
II
12.1
280
89
Ill
11.3
280
89
rectus
Proteinase
B
20.8
280
90
20.4
280
90
18.2
280
91
Protein Desulfovibrio
gigas
MO-(2Fe-2S)
0.97
462
92
q /cluster
of
(2Fe-2S);
six
clusters present. Desulfovibrio
africanus
MO-Fe-S protein
4.84
4.32
615
93
6.44
5.76
410
93
do
280
93
do
275-8
94
ii.0
276
95
11.7
276
95
50 mM Ph, pH 7.6; MW = 112,000.
14.1 Lumbricus
Ca++-binding Phaseolus Surface
protein
3.2
mun~o, black gram active protein
S1 $2 Anthozean
12.6
terrestris
coelenterate
Ca++-dependent
(Renilla reniformis)
modulator
protein
0.3384
1.9
276
96
7.5 mM Tris, EDTA,
5 mM
0.6 mM NAN3,
pH 7.8. MW = 18,750. Luciferin-binding
protein
4.7
446
97
1 mM Tris, EDTA,
pH 7.2.
Dry wt. 13.1
276
97
do
0.I mM
Proteins, molar absorptivity,
A IL~ cm
values
49
Table 1. (Contd) a
Protein
xlZM0-4
Al%b 1 cm
nmC
Ref.
50
498
98
MW
8.9
280
98
do
3.7
280
99
0.1 M NaPh, 0.1%
Comments
Green-fluorescent protein
27
=
54,000;
AA, interf. 4.8 Rhodos~rillum rubrum Chromatophores
SDS, pH 7.0. Data from Fig. 3 f. Sesame
($esamum indicum L.)
R-Globulin
10.8
280
i00
llS protein
7.9
280
101
7S protein
5.8
280
101
2S protein
7.2
280
i01
i.i
280
102
Data from Fig. 6 f.
1.61
276
103
MW = 9055 (104).
Soybeans
Porcine Plasma/urine Low mol. wt. protein Intestine
Ca++-binding protein
0.1454
Human Serum HPG-I j
13.8
278
105
HPG-2 j
1.9
280
105
6.56
9.5
280
106
M W = 69,000.
6.40
10.0
280
105
M W = 64,000.
17.5
280
[07
MW = 16,000.
Plasma Protein S Bovine Plasma Protein S Liver Highly acid protein BLA IV
2.8
Calf bone, decarboxylated ~ - c a r b o x y l g l u t a m i c acid protein
10.6
280
108
i1.4
280
[09
12.0
280
ii0
Chicken Muscle Parvalbumin Embryo fibroblast Cell surface protein
216
210
ii0
328
205
110
Donald M. Kirschenbaum
50
(Contd)
Table h ~aM x 10 -4
Protein
A1%
nm c
Ref.
1.9
277
iii
Biuret
1.5
277
iii
Dye b i n d i n g
Comments
1 cm
Rabbit skeletal muscle M o d u l a t o r protein
Virus,
intact m a t r i x p r o t e i n from n u c l e a r - p o l y h e d r o s i s virus
of the cabbage looper
(Tricho~lusia ni), Fraction I and
Fraction II after protein digestion FI
15.6
276
112
Lowry
FII
11.2
276
i12
Lowry
ii.i
276
112
Dry wt.
10.3
280
113
MW = 25,200.
280
114
N
280
115
20 mM Tris-HC1,
Protein m e t h y l a s e
II
(EC 2.1.1.24)
Horse e r y t h r o c y t e
2.6
Purine n u c l e o s i d e p h o s p h o r y l a s e
(EC 2.4.2.1)
Human e r y t h r o c y t e
9.64
Pyrocatechase I Pseudomonas sp. BI3
9.8
1 mMME,
pH 8.0.
Data from Fig. Pyruvate, phosphate dikinase Bacteroides s[mbiosus Pyruvate kinase
7.7
280
116
4.7
280
117
280
118
(EC 2.7.1.40)
Rhodamine sarcoma of rats Spleen type
(M2-type)
Retinoic acid-binding protein Bovine retina
2.09 k
Rat testis
5.0
350
i19
2.38
280
119
280
120
Retinol-binding protein Rat testis cytosol
14
Taurine:~-ketoglutarate transaminase Achromobacter su~erficialis
(EC 2.6.1.55)
7.20
280
121
2.72
9.7
275
122
MW = 28,000.
subunit
0.85
6.3
275
122
MW = 13,600.
subunit
1.87
13.2
275
122
MW = 14,140.
7.25
280
123
MW = 36,500.
Thyrotropin Bovine
~
Thyroxine-binding globulin Human serum
2.65
Toxin Scorpion
(Androctonus australis)
Toxin I
1.07
15.70
275
124
MW = 6822.
Toxin II
1.81
24.94
276
124
MW = 7249.
6f
Proteins, molar absorptivity, A I ~ values
51
Table I. (Contd) ~ Ma x 10 -4
Protein
Al%b 1 cm
nm c
Ref.
Comments £ _
Naja nasa siamensis Siamensis
3~ 3-nitrotyrosine
derivative
13
280
125
pH 6.7.
15
280
125
pH 6.5.
277
126
0.05 M AmC,
Nasa ni@ricolis Toxin ~ ~ 3-nitrotyrosine derivative Wasp
(Microbracon hebetor
Paralysing
toxin
(SAY)) 15.6
pH 9.2. Clostridium Tetanus
tetani toxin
Cell toxin
7.8
280
127
11.8
280
128
i00 ~4 AmB-Ac buffer,
Filtrate
toxin
12.4
280
128
11.3
280
128
pH 7.5.
do In sulfitolysisurea reaction medium.
Toxin T6
Toxin T7
80.01
278
129
0.07 M KPh, pH 7.0.
98.61
292
129
0.i N NaOH.
79.91
278
129
0.07 M KPh, pH 7.0.
95.4
292
129
0.1 N NaOH.
°eM is the molar absorptivity with units of M-l cm-~ and is either the value reported in the reference cited or calculated from the Ai1% cm value and the molecular weight. bAl~m is the absorption for a 1% solution in a 1 cm cuvet and is either the value reported in the reference cited or calculated from the em and the molecular weight. The relationship between eM, Aj cm, and molecular weight, MW, is - (At era) (MW).
CRefers to the wavelength cited and may not be the peak of the absorption band. aAbbreviations used and methods of protein determination. Abbreviations used: EDTA, ethylenediaminetetraacetic acid; NaPh, sodium phosphate; DTr, dithiothreitol; Ac, acetate; cAMP, cyclic Y, Y-adenosine phosphate; GSH, glutathione; Tris, trishydroxymethylaminomethane; AmB, ammonium bicarbonate; SDS, sodium dodecylsulfate; Mes, 4-morpholine ethane sulfonic acid, AmC, ammonium carbonate. Methods of protein determination: Dry wt., dry weight; N, nitrogen determination; AA, amino acid analysis; Interf., interferometry; Biuret, a colorimetric method; Lowry, a colorimetric method; Dyebinding, colorimetric method. eAbsorbance at 1 mg/ml at 280 nm was less than 0.08. tFigure found in reference cited. ~nc, not cited. hPer heme/17,000 daltons. ~PNPA, p-nitrophenylacetate. JHPG, hydroxyapatite passing globulin. kCalculated from tyrosine and tryptophan content. 'These values are for a 1% solution of nitrogen.
REFERENCES FOR TABLE I 1. E. G. Beale, J. R. Dedman, and A. R. Means, J. Biol. Chem. 252, 6322 (1977). 2. C. B. Klee and M. H. Krinks, Biochemistry 17, 120 (1978). 3. G. A. Nimmo and P. Cohen, Fur. J. Biochem. $7, 341 (1978). 4. J. Travis, D. Garner, and J. Bowen, Biochemistry 17, 5647 (1978). 5. T. Sasaki, J. Biochem., Tokyo 84, 267 (1978). 6. C. A. Ryan and A. K. Balls, Proc. Nat. Acad. Sci. 45, 1839 (1962). 7. R. Pannell, D. Johnson, and J. Travis, Biochemistry 13, 5439 (1974). 8. W. P. Abrams, P. Kimbel, and G. Weinbaum, Biochemistry 17, 3556 (1978). 9. O. Abe, J. Ohata, Y. Utsumi, and K. Kuromizu, J. Biochem., Tokyo 83, 1737 0978).
52
Donald M. Kirschenbaum
10. A. Kakinuma, H. Sugino, N. Moriya, and M. Isono, J. BioL Chem. 253, 1529(1978). 11. P. Bunning and H. Holzer, J. Biol. Chem. 252, 5316 (1977). 12. K, Inouye, B. Tonomura, K. Hiromi, S. Sato, and S. Murao, J. Biochem., Tokyo 82,961 (1977). 13. Y. Uehara, B. Tonomura, and K. Hiromi, 1 Biochem., Tokyo 84, 1195(1978). 14. C. B. Glaser and L. Karic, Int. J. Prot. Pep. Res. 12, 284 (1978). 15. M. J. Swartz, H. L. Mitchell, D. J. Cox, and G. R. Reeck, J. Biol. Chem. 2S2, 8105 (1977). 16. A. P. Banerji and K. Sohonie, Enzymologia 36, 137 (1969). 17. S. P. Wood, I. J. Tickle, T. L. Blundell, A. Wollmer, and D. F. Steiner, Arch. Biochem. Biophys. 186, 175 (1978). 18. G. F. Seelig and R. F. Colman, Arch. Biochem. Biophys. 188, 394 (1978). 19. M-F. Carlier and D. Pantaloni, Fur. J. Biochem. 37, 341 (1973). 20. D. V. Banthorpe, S. Doonan, and J. A. Gutowski, Arch. Biochem. Biophys. 184, 381 (1977). 21. J. D. Corbin, P. H. Sugden, L. West, D. A. Flockhart, T. M. Lincoln, and D. McCarthy, J. Biol. Chem. 253, 3997 (1978). 22. T. Nakayasu and S. Nagasawa, J. Biochem., Tokyo 85, 249 (1979). 23. R. Branden, B. G. Malmstrom, and T. Vanngard, Eur. J. Biochem. 36, 195 (1973). 24. R. Branden and J. Deinum, Biochim. Biophys. Acta 524, 297 (1978). 25. S. C. Froehner and K. E. Eriksson, J. Bact. 120, 458 (1974). 26. A. V. Emes, M. J. Gallimore, A. W. Hodson, and A. L. Lather, Biochem. J. 243, 453 (1974). 27. P. A. Sullivan, Y. S. Choong, W. J. Schreurs, J. F. Cutfield,and M. G. Shepherd, Biochem. 3".165,375 (1977). 28. W. F. Line, D. A. Sly, and A. Bezkorovainy, Int. J. Biochem. 7, 203 (1976). 29. E. W. Voss Jr, J. L. Fryer and G. M. Banowetz, Arch. Biochem. Biophys. 186, 125 (1978). 30. C. H. Wei and C. Koh, J. Mol. Biol. 123, 707 (1978). 31. B. A. Baldo, W. H. Sawyer, R. V. Stick, and G. Uhlenbruck, Biochem. J. 175, 467 (1978). 32. i. N. Bauch and R. D. Poretz, Biochemistry 16, 5790 (1977). 33. P. Lehtovaara, Acta Chem. Scand. 31B, 21(1977). 34. T. Ohshima, H. Misono, and K. Soda., J. Biol. Chem. 253, 5719 (1978). 35. T. Tachiki and T. Tochikura, Arg. Biol. Chem. 40, 2187 (1976). 36. M. Sugiura and T. Oikawa, Biochim. Biophys. Acta 409, 262 (1977). 37. D. H. Ohlendoff, G. R. Barbarash, A. Trout, C. Kent, and 1. Barmszak, I. Biol. Chem. 252, 7992 (1977). 38. O. Shimonura, T. Masugi, F. H. Johnson, and Y. Haneda, Biochemistry 17, 994 (1978). 39. H. Misono and K. Soda, J. Biochem., Tokyo 82, 535 (1977). 40. L. Lundvik, F. Lustig, and L. Rymo, Acta Chem. Scand. 31B, 95 (1977). 41. G. M. Malinina, I. A. Cherkasov, N. A. Kravchenko, and V. A. Berestov, Biochemistry (Biokhimiya trans.) 42, 680 (1977). 42. S. K. Gayen, S. Som, N. K. Sinha, and A. Sen, Arch. Biochem. Biophys. 183, 432 (1977). 43. M. L. Elwell and J. A. Schellman, Biochim. Biophys. Acta 494, 367 (1977). 44. K. Tamanaka, K. Izawa, and K. Temmizu, Agr. Biol. Chem. 41, 1695 (1977). 45. J. A. Duine, J. Frank, and J. Westerling, Biochim. Biophys. Acta 524, 277 (1978). 46. R. N. Patel, C. T. Hou, and A. Felix, J. Bact. 133,641 (1978). 47. A. M. Wadzinski and D. W. Ribbons, J. Bact. 122, 1364(1975). 48. B. Ekstrom and I. Berggard, 1 Biol. Chem. 252, 8048 (1977). 49. R. Cigen, J. A. Ziffer, B. Berggard, B. A. Cunningham,and I. Berggard, Biochemistry 17, 947 (1978). 50. J. R. Quinn and A. M. Pearson, J. Food Sci. 29, 429 (1964). 51. S. K. Wolf, D. A. Watts, and W. D. Brown, J. Agric. Food Chem. 26, 217 (1978), 52. T. Nakanishi and M. I. Izumimoto, Agr. Biol. Chem. 36, 1505(1972). 53. K. R. H. Read, Comp. Biochem, Physiol. 25, 81 (1968). 54. K. R. H. Read, Comp. Biochem. Physiol. 22, 1 (1967). 55. W. F. Stafford III and A. G. Szent-Gyorgi,Biochemistry 17, 607 (1978). 56. P. D. Chantler and A. G. Szent-Gyorgi, Biochemistry 17, 5440 (1978). 57. S. S. Margossian and S. Lowey, Biochemistry 17, 5431 (1978). 58. F. Huriaux and B. Focant, Arch. Int. Physiol. Biochim. 85,917 (1977). 59. N. Maeda and N. Tamiya, Biochem. J. 175, 507 (1978). 60. T. Kido, K. Soda, and K. Asada, J. Biol. Chem. 253, 226 (1978). 61. J. S. Twu, R. K. Haroz, and R. K. Bretthauer, Arch. Biochem. Biophys. 184, 249 (1977). 62. M. A. Qasim and A. Salahuddin, Biochim. Biophys. Acta 536, 50 (1978). 63. P. I. Clark and G. Lowe, Eur. J. Biochem. 84, 293 (1978). 64. J. J. Chang and A. Holtzer, Arch. Biochem. Biophys. 185, 488 (1978). 65. L. N. Lin and J. F. Brandts, Biochemistry 17, 4102 (1978). 66. A. Piront and C. Gerday, Comp. Biochem. Physiol. 46B, 349 (1973). 67. H. D. Campbell, D. A. Dionysius, D. T. Keough, B. E. Wilson, J. De Jersey, and B. Zerner, Biochem. Biophys. Res. Commun. 82, 615 (1978). 68. R. Jones, M. B. Wilkins,J. R. Coggins,C. A. Fewson, and A. D. B. Malcolm, Biochem. J. 175, 391 (1978). 69. G. Colombo, G. M. Carlson, and H. A. Lardy, Biochemistry 17, 5321 (1978). 70. A. H. J. Ullah and V. P. Cirillo, Z Bact. 131,988 (1977). 71. K. H. Cass and E. Stellwagen,Arch. Biochem. Biophys. 171,682 (1975). 72. K. Uyeda and S. Kurooka, I. Biol. Chem. 245, 3315 (1970). 73. G. A. Grant, L. M. Keefer, and R. A. Bradshaw, Z Biol. Chem. 253, 2724 (1978). 74. W. K. Krietsch, I. U. Freier, and S. W. Eber, Arch. Biochem. 193, 415 (1979). 75. F. M. Van Wezel, A. J. Slotboom, and G. De Haas, Biochim. Biophys. Acta 452, 101 (1976). 76. A, J. Slotboom, E. H. J. M. Jansen, H. Vlijm, F. Pattu, P. Soares de Araujo, and G. H. De Haas, Biochemistry 17, 4593 (1978). 77. R. K. Bhat, T. Smith, L. Greer, and R. F. Steiner, Arch. Biochem. Biophys. 190, 677 (1978). 78. J. Trinick and S. Lowey, I. Mol. Biol. 113, 343 (1977). 79. V. Piglet and R. R. Conley, J. Biol. Chem. 253, 1910(1978). 80. K. Yoshiwara, T. Hashida, Y. Tanaka, H. Ohgushi, H. Yoshihara, and T. Kamiya, Z Biol. Chem. 253, 6459 (1978).
Proteins, molar absorptivity, Al~mvalues
53
81. M. K. Bhat, K. Sreekrishna, and H. R. Cama, Ind. J. Biochem. Biophys. 14, 125 (1977). 82. L. Carlsson, L-E. Nystrom, I. Sundkvist, F. Markey, and U. Lindberg, J. Mol. Biol. 115, 465 (1977). 83. R. C. Scarpulla and R. L. Softer, Z Biol. Chem. 253, 5997 (1978). 84. D. W. Cameron, W. H. Sawyer, and V. M. Trikojus, Austral. J. Biol. Sci. 30, 173 (1977). 85. T. Kurecki, M. Laskowski St., and L. F. Kress, J. Biol. Chem. 253, 8340 (1978). 86. M. S. Tsai, T. H. Hseu and Y. S. Shen., Int. J. Prot. Pep. Res. 12, 293 (1978). 87. R. S. Boethling, J. Bact. 121,933 (1975). 88. S. Wahlby, Biochim. Biophys. Acta 185, 178 (1%9). 89. A. Gertler and M. Trop, Eur. J. Biochem. 19, 90 (1971). 90. P. Borgia and L. L. Campbell, J. Bact. 120, 1109 (1974). 91. K. Mizusawa and F. Yoshida, J. Biol. Chem. 247, 6978 (1972). 92. J. J. G. Moura, A. V. Xavier, R. Cammack, D, O, Hall, M. Bruschi, and J. Le Gall, Biochem. J, 173, 419 (1978). 93. E. C. Hatchikian and M. Bruschi, Biochem. Biophys. Res. Comm. 86, 725 (1979). 94. D. M. Waisman, F. C. Stevens, and J. H. Wang, J. Biol. Chem. 253, 1106(1978). 95. N. S. Sucheelamma and M. V. L. Rao, Int. J. Pep. Prot. Res. 12, 93 (1978). 96. H. P. Jones, J. C. Matthews, and M. J. Cormier, Biochemistry 15, 55 (1979). 97. H. Charbonneau and M. J. Cormier, J. Biol. Chem. 254, 769 (1979). 98. W. W. Ward and M. J. Cormier, .I. Biol Chem. 254, 781 (1979). 99. J. Miyake, S. Ochiai-Yanagi,T. Kasumi, and T. Takagi, J. Biochem., Tokyo 83, 1679(1978). 100. T. S. Lakshmi and P. K. Nandi, Int. J. Pep. Prot. Res. 12, 197 (1978). 101. A. G. Appu Rao and M. S. Narasinga Rao, Prep. Biochem. 7, 89 (1977). 102. U. Ravnskov and B. G. Johansson, Int. J. Biochem. 7, 579 (1976). 103. K, J. Borrington, D. I. C. Kells, A. J. W. Hitchman, J. E. Harrison, and T. Hofmann, Can. J. Biochem ~ , 492 (1978). 104. T. Hofmann, M. Kamakami, H. Morris, A. J. Hitchman, J. E. Harrison, and K. J. Dorrington, Calcium Binding Protein and Calcium Function (Edited by R. H. Wasserman) p. 73. North-Holland, New York (1977). 105. H. Bohn, and W. Winckler, Blut 35, 305 (1977). 106. R. G. Discipio and E. W. Davie, Biochemistry 18, 899 (1979). 107. T. Kato, Y. Kato, H. Kasai, and Okuyama, J. Biochem., Tokyo 82, 1297 (1976). 108. J. W. Poser and P. A. Price, J. Biol. Chem. 254, 431 (1979). 109. C. W. Heizmann and E. E. Strehler, J. Biol. Chem. 254, 4296 (1979). ll0. S. S. Alexander Jr., G. Colonna, K. M. Yamada, I. Pastan, and H. Edelhoch, J. Biol. Chem. 253, 5820 (1978). 111. M. Yazawa, H. Kuwaya, and K. Yagi, J. Biochem., Tokyo 84, 1235(1978). 112. D. A. Eppstein and J. A. Thoma, Biochem. J. 167, 321 (1977). 113. E. T. Polastro, M. M. Deconinck, M. R. Devogel, E. L. Mailier, Y. B. Looza, A. G. Schnek, and J. Leonis, Biochem, Biophys. Res. Commun. 81,920 (1978). 114. J. D. Stoeckler, R. P. Agarwal, K. C. Agarwal, K. Schmid, and R. E. Park, Biochemistry 17, 278 (1978). 115. E. Dorn and H-J. Knackmuss, Biochem. J. 174, 73 (1978). 116. H. Yoshida and H. G. Wood, J. Biol. Chem. 253, 7650 (1978). 117. Y. Nagao, T. Toda, K. Miyazaki, and T. Horio, J. Biochem., Tokyo $2, 1331 0977). 118. J. C. Saari, S. Futterman, and L. Bredberg, J. Biol. Chem. 253, 643 (1978). 119. D. E. Ong and F. Chytil, J. Biol. Chem. 253, 4551 (1978). 120. A. C. Ross, Y. I. Takahashi and D. S. Goodman, J. Biol. Chem. 253, 6591 (1978). 121. S. Toyama, H. Misono, and K. Soda, Biochim. Biophys. Acta 523, 75 (1978). 122. J. C. Pernollet, J. Garnier, J. G. Pierce, and R. Salesse, Biochim. Biophys. Acta 446, 262 (1976). 123. K. Sterling, S. Hamada, Y. Takemura, M. A. Brenner, E. S. Newman, and M. Inada, J. Clin. lnves. 50, 1758(1971). 124. C. Rochat, H. Rochat, F. Miranda, and S. Lissitzky, Mem. lnstit. Butantan. Simp. Int. 33, 447 (1976). 125. E. Karlsson and J. Sundelin, Toxicon 14, 295 (1976). 126. B. J. Visser, W. Spanjer, H. Deklonia, T. Piek, C. Van Dermeer, and A. C. M. Van Der Drift, Toxicon 14, 357 (1976). 127. S. G. Murphy, T. H. Plummer, and K. D. Miller, Fed. Am. Soc. Exp. Biol. 27, 268, abstract No. 298 (1968). 128. C. J. Craven and D. J. Dawson, Biochim. Biophys. Acta 317, 277 (1973). 129. B. Bizzini, A. Turpin, and M. Raynaud, Ann, lnstit. Past. 116, 668 (1969).