Molar absorptivity and A1cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions—XXI

Molar absorptivity and A1cm1% values for proteins at selected wavelengths of the ultraviolet and visible regions—XXI

1. Quant. Spectrosc. Radiat. Transfer VoL 27, No. I, pp. 39-53, 1982 0022.-4073]821010039-15503.0010 Printed in Great Britain. Pergamon Press Ltd. ...

539KB Sizes 0 Downloads 27 Views

1. Quant. Spectrosc. Radiat. Transfer VoL 27, No. I, pp. 39-53, 1982

0022.-4073]821010039-15503.0010

Printed in Great Britain.

Pergamon Press Ltd.

M O L A R A B S O R P T I V I T Y A N D A.,-,I ~l cr~ V A L U E S F O R P R O T E I N S AT S E L E C T E D W A V E L E N G T H S OF T H E U L T R A V I O L E T AND VISIBLE REGIONS--XXI DONALDM. KIRSCHENBAUMt Department of Biochemistry, College of Medicine, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, U.S.A. (Received May 27, 1981) Abstract-A table of molar absorptivity and At~cm values for about 200 proteins and protein derivatives is given. The conditions used to obtain these values, the sources of the proteins, and references to the original literature are also given. INTRODUCTION

The molar absorptivity and Al~m values for more than 200 protein and protein derivatives and the conditions under which these values were obtained are listed in Table 1. The sources of the proteins and references to the original literature are also given. Additional pertinent information can be found in the footnotes to Table 1. The method used to compile these data has been described by Kirschenbaum? This paper is part of a continuing compilation of absorption characteristics of proteins? Acknowledgements--The Library of the Downstate Medical Center college of Medicine has been the major source of all publications examined. What was not available in the library was obtained for me from other libraries by its excellent interlibrary loan service. I should like to thank all of the librarians involved for their most useful and continuing assistance. During the summers of 1971-7and 1977-80, I was a Library Reader at the Library of the Marine Biolobical Laboratory, Woods Hole, Mass, From February to July 1976, I used the Library of the University of Sussex, Falmer, Brighton, England. I thank the Librarians of each of these libraries for their kind assistance I thank Mr. Edward Becker for assisting me with photocopying, Mr. Noah Eric Aroll and Mr. Zvi Aroll for general assistance, and Ms. G. Hawkins for typing the references list. This compilation project was supported in part by NIH Grant No. 1 R01 LM 03591 awarded by the National Library of Medicine. REFERENCES 1. D. M. Kirschenbaum, J. Chem. Inform. Comput. Sci. 20, 152 (1980). 2. D. M. Kirschenbaum, Int. J. Biochem. 11,487 (1980).

tFaculty Exchange Scholar-Suny. Table 1. Molar absorptivity, e, and a x~ M10 -4

Protein

A1 l%bcm

A J~ ic m

nmC

values for proteins Ref.

Comments

Inhibitor c~P-dependent

protein kinase and phosphodiesterase 1.45

7.6

280

1

0.i mM EDTA,

cortex

9.6

278

2

0.04 M Tris-HCI,

Rat testis

pH 7.

cAMp phosphodiesterase Bovine cerebral

pH 8, containing 1 mM MgCl2, NaCI,

0.i M

0.1 mM DTT;

10% glycerol.

39

AA.

Donald M. Kirschenbaum

40

Table 1. (Contd) c Ma x l0 -4

Protein

Inhibitor-l,

Al%b

inhibits phosphorylated

Rabbit skeletal muscle Chymotrypsin

Ref.

Comments

phosphorylase

__e

phosphatase

3

inhibitor

Human plasma Silkworm

nm c

1 cm

6.2

280

4

Interf.

7.9

276

5

MW = 7,000. Fig.

6

pH 7.6; data from

(Bombys mori)

Hemolymph

0.5600

Potato

9.32

280

Fig. Proteinase

7f

3 f .

inhibitor

Human plasma

5.30

2.81

280

7

Interf. MW = 53,000.

Canine plasma

5.82

280

8

4.30

280

9

MW = 13,000.

8.7

279

i0

pH 7.5

3-Nitrotyr 41- 0.4100

428

ii

pH 9.

0.2800

360

ii

pH 4.5.

Vicia angustifolia segetalis

L. vat

Koch 0.5590

Streptomyces antifibrinol~ticus Yeast Proteinase

Stre~tom~ces

B inhibitor,

albo~riseolus

Subtilisln

IB2

S-3253

inhiblto~

0.95

8.22

276

12

8.10

280

12

8.29

276

13

MW = 11,500.

5.0

280

14

AA, LS.

280

15

0.05 M Tris-HCl,

Trypsin inhibitor Human serum Corn,

opaque-2

20

0.2 M NaC1, pH 7.5. Field bean

(Dolichos

lablab)

7.58

280

16

276

17

Insulin Rat

10.6

0.025 M Tris-HCl, pH 7.75; dry wt.

Isocitrate

dehydrogenase,

NADP dependent

(EC 1.1.1.42)

Human heart

5.67

10.7

280

18

MW = 53,000.

Beef liver

6.2

12.9

278

19

MW = 48,000;

20

Dry wt.

Isopentenyl pyrophosphate

isomerase

Pig liver Kinaae,

protein,

Kininogen,

(EC 5.3.3.2)

9.1 cAMP-dependent,

Bovine heart

refr.

regulatory

280 subunit

6.0

280

21

7.01

280

22

high molecular weight

Human plasma

0.i M A C pH 6.5.

buffer,

Proteins, molar absorptivity, AI~,~ values

41

Table 1. (Contd) a x~10-4

Protein

Al%b icm

nmC

Re fo

Comments

K

Laccase

(EC 1.10.3.2)

Fungal

(Polysporus

versicolor) Tree

0.49

610

23

0.57

614

23

278

24

20 m M N a P h ,

280

25

:4W = 64,800.

280

26

Dry wt.

1.14

450

27

0.02 M NaPh, pH 7.0.

1.28

450

27

0.1 M NaPh, pH 6.0.

0.90

450

27

0.02 M Mes/NaOH,

(Rhus

vernicifera) Vietnamese

lacquer tree

s uccedanea)

(Rhus

12.0

pH 5.5.

Data from Fig. Neuros~ora

crassa

9.07

Lactate dehydrogenase

if .

(EC 1.1.1.27)

Human heart Lactate oxidase

14.0

13.2 (EC 1.13.12.4)

Mycobacterium sme~mati9

pH 6.0. 1.07

450

27

0.1 M Tris-Ac, pH 7.8.

Lactoferrin,

fragment

from peptic digestion

Human milk

0.5

465

2B

ll.l

280

28

0.2 M KCI.

278

29

0.1 M AmB, pH 7.7;

Lectin Chinook

salmon ova

(Oncorhynchus

tshaw~tscha)

7.8

dry wt. Ricinus communis Clam

seeds

(Tridacna maxima)

13.43

280

30

24.4

280

31

0.05 M Tris-HCl, 0.1 M KCI, pH 7.0; refr.

Maclura pomifera

seeds

15.7

280

32

Leghemoglobin Kidney beans Ferrous

Ferrous-02

(Phaseolus vul@aris

556

33

Based on heme con.

9.84

427

33

do

1.47

574

33

do

1.44

539

33

do

409

33

do

1.38

563

33

do

1.40

538

33

do

417

33

do

13.4 Ferrous-CO

vat. Kaiser Wilhelm)

1.34

21.0

Donald M. Kirschenbaum

42

Table 1. (Contd) a 6M x l0 -4

Protein

A l%b 1 cm

nmC

Comments

Ref.

m,,

Ferric-H20

0.312

625

33

do; pH 6.0.

1.01

532

33

do

404.5

33

do

572

33

14.2 Ferric-OH-

1.12

Based on heme con.~ pH i0.I.

1.22

539

33

do

413

33

do

0.997

573

33

Based on heme

1.26

539

33

do

414.5

33

do

538

33

do

417

33

do

533

33

do

411

33

do

1.10

557

33

Based on heme con q

1.29

528

33

do

407.5

33

do

0.595

622

33

Based on heme con.

0.504

570

33

do

0.908

494

33

do

403.5

11.0 Ferric-N 3

12.3 Ferric-CN

1.16 13.0

Ferric-Imidazole

1.28 13.8

con.

FerricNicotinate

pH 6.0.

12.1 Ferric-Acetate

16.9 Ferric-F

33

do

0.902

605

33

do

0.700

576

33

do

0.672

526

33

do

0.956 17.0 Leucine dehydrogenase Bacillus

33

do

33

do

280

34

Dry wt.

280

35

0.01 M KPh, pH 7.0;

(EC 1.4.1.9)

s~haericus

L-Leucine-~-ketoglutarate Acetobacter

485 400

subox[dans

9.18 transaminase 10.35

data from Fig. Lipase

4 f.

(EC 3.1.i.3)

Pseudomonas

fluorescens

11.05

280

36

7.5

280

37

Lipovitellin Xeno~us

laevis egg y o l k

0.25 M Tris-HCl containing NaCI,

0.25 M

pH 7.5;

dry wt.

Proteins, molar absorptivity, A~~cm values

43

Table 1. (Contd) a SM x 10 -4

Protein

Al%b i em

nm

c

6.1

280

38

280

39

Dry wt.

Re f.

Comments

a.

Luciferase Deep-sea

shrimp

(Oplophorus

~rgc~lorostris) Lysine aminotransferase Flavobacterium liquidum) Lysine:tRNA

(EC 2.6.1.36)

lutescens

(Achromobacter

IFO 3084

ligase

7.35

(EC 6.1.1.6)

Brewer's yeast

9.25

280

40

0.05 M KPh, pH 7.0.

Escherichia

6.66

280

40

do

Lysozyme

coli

(EC 3.2.1.17)

Mink Spleen

6.9

275

41

Kidney

6.9

275

41

Liver

5.0

275

41

27.0

nc g

42

Tortoise

(Trion~x ~an@eticus

Cuvier)

Dry wt.

Phage T4 Wild type

2.42

280

43

eRl

2.09

280

43

eRRR

1.38

278

43

280

44

280

45

D-Mannitol

dehydrogenase

Leuconostoc mesenteroides ~4ethanol dehydrogenase H[phomicrobium

4.14

Dry wt.

(EC 1.i.99.8)

X

9.6

0.02 M KPh, pH 7.0. Data from Fig.

i f.

Methylomonas methanica

5.67

9.45

275

46

50 mM Ph, pH 7.0. Data from Fig.

4 f.

MW = 60,000. Meth~lococcus

ca~sulatus

Soluble

45.8

280

47

Data from Fig.

3.0

350

47

do

66.7

280

47

do

4.2

250

47

do

4.72

280

48

pH 7.0.

1.52

280

49

pH 7.0.

Solubilized

•l-Microglobulin Human urine ~2-Microglobulin Human urine

8 f.

Donald M. Kirschenbaum

44

Table 1. (Contd) a

Protein

~M x 10 -4

A l%b 1 cm

nm c

Ref.

50

Comments

|

Myoglobin Bovine muscle

MbIA-CO

1.51

578

1.31

560

50

1.73

542

50

0.85

502

50

18.4 MbIB-CO

423

50

1.41

578

50

1.23

560

50

1.61

542

50

0.85

502

50

423

50

578

50

16.6 MblI-CO

1.55 1.28

560

50

1.76

542

50

0.73

502

50

423

50 51

pH 6.0, Ph.

20.9 Mb

1.38

560

MbO 2

1.44

580

51

do

1.44

542

51

do

1.22

578

51

do

1.46

540

51

do

0.39

630

51

do

Mb

1.29

556

52

Me tMb

0.94

500

52

0.36

630

52

1.48

541

52

1.29

578

52

1.13

540

52

1.29

555

52

0.98

500

52

0.37

630

52

MbCO

MetMb Porcine

MbCO

MetMbCN Horse Mb MetMb

MbCO

1.48

540

52

1.29

577

52

1.33 h

540

53

Bus[con contrarium Mb-l-CO

AA

Proteins, molar absorptivity, A]~. values Table 1.

CaM

Protein

Bus~con

x 10 -4

45

(Contd)

A l%b 1 cm

n~ c

Re f.

540

54

AA.

Comments

c a r i c u m Gmelin

MbCO

1.42 h 1.36 h 18.3 h 3.64 h

571.5

54

do

420

54

do

280

54

do

Myosin Light chains Scallop

(Aequipecten

irradians)

Regulatory

2.0

280

55

Thiol

5.5

280

55

5.0

280

55

4.6

280

55

4.6

280

55

5.5

280

56

55

230

56

21

236

57

280

57

6O

230

57

25

236

57

280

57

62

230

57

26

236

57

280

57

59

2~

57

24

236

57

7.4

280

57

59

230

57

24

H a r d shell clam

(Mercenaria

mercenaria) Surf c l a m

(Spisula

solidissima) Squid

(Loligo pealei)

Rabbit,

DTNB

HMM

6.0

EDTA-SI

8.1 Sg-Sl

8.3 SI-AI

SI-A2

236

57

7.5

280

57

LCI

4.5

280

58

LC2

5.4

280

58

DTNB chain.

LC3

3.5

280

58

Alkali chain.

11.0

280

59

MW = 6600.

Carp white muscle Alkali chain-

Neurotoxins Sea snake

(Astrotia stokesii)

Toxin a

0.7260

Toxin b

1.39

18.4

280

59

MW = 7580.

Toxin c

1.55

20.5

280

59

MW = 7787.

274

60

Dry wt.

2-Nitropropane

dioxygenase

Hansenula mrakii

(EC 1.13.11) 9.8

46

Donald M. Kirschenbaum Table 1. (Contd) ~ Ma x 10 -4

Protein

Nucleotide

pyrophosphatase

Bakers'

Al%b

nm c

Ref.

Comments

1 cm

(EC 3.6.1.9)

yeast

15.8

280

61

Ovalbumin Commercial

3.05

280

62

32% succinylated

2.97

280

62

90% butyrated

2.86

280

62

92% succinylated

2.82

280

62

95% aeetylated

2.80

280

62

9.0

278

63

3.02

277

64

Papain,

dehydroserine-25

Papain,

modified

Paramyosin Earthworm

(Lumbricus

terrestris)

0.06 M KPh, KC1,

0.6 M

0.0005 M DTT,

pH 7.4. Parvalbumin Carp muscle

(Cyprinus car~io)

Band 3

1.80

259

65

Band 5

1.80

259

65

Band 2

2.00

259

65

1.84

259

66

1.57

259

66

280

67

Dry wt.

550

67

Value per Fe.

280

67

Dry wt.

550

67

Value per Fe.

Fish muscle

(Chondrostoma

nasus L.)

Phosphatase,

Fe containing

Beef spleen

15.9 0.204

Pig allantoic

14.2

fluid 0.200

Phosphoenolpyruvate Crassulacean

carboxylase

plant

(EC 4.1.1.31)

(Bryo~h~llum

Hamet et Perrier Rat liver cytosol

11.9

Phosphoenolpyruvate-dependent Enzyme

0.1 N NaOH.

fedtschenkoi)

11.6

280

68

16.6

280

69

sugar phosphotransferase

MW = 72,000;

N.

system

I, Mycoplasma

ca~ricolum

10.5

280

70

MW = 220,000.

Thermus X-I

6.0

280

71

Refr.

C l o s t r i d i u m ~asteurianum

4.8

290

72

0.1 N NaOH.

3.9

275

72

Phosphofructokinase

23.1 (EC 2.7.1.11)

0.05 M KPh, pH 7.0~ dry wt. Data from Fig.

5 f.

Proteins, molar absorptivity,

Ma x 10 -4

m

values

47

(Contd)

Table 1. Protein

A r *~ c m

Al%b 1 cm

nmC

Ref.

Comments I

,

D-3-Phosphoglycerate

dehydrogenase

Chicken liver Phosphoglycerate

(EC i.i.i.95) 5.3

278

73

6.8

280

74

12.3

280

75

13.0

280

76

13.0

280

76

13.2

280

77

12.4

280

78

11.4

280

79

kinase

Human skeletal muscle B form

Dry wt.

~ - P h o s p h o l i p a s e A2 Porcine pancreas Z ymogen Phospholipase

A2

Porcine pancreas E-Amidinated Phosphorylase

B (monomeric)

Rabbit muscle Phosphorylase

b, glycogen

Chicken muscle

(M-Line protein) ll. 2

Refr. and N.

Phosphothioredoxin Escherichia

coli

Poly (adenosine diphosphate

ribose)

polymerase

Bovine thymus

7.4

280

80

50 mM Tris-HCl, 1 mM EDTA, NAN3,

1 mM

1 mM GSH,

0.5 mM DTT, pH 7.4. Prealbumin Chicken

serum 9.5

PAl

15.81

280

81

20 m M N a P h , containing NaC1.

pH 7.6 0.2 M

MW = 60,000.

PA2

12.5

25.56

280

81

do.

MW = 49,000.

PA3

10.8

22

280

81

do.

MW = 49,000.

10.4

280

82

13.0

280

82

8.4

6.8

260

83

MW = 124,000.

14.9

12.0

Profiiactin Calf spleen Prolifin Calf spleen Proline dehydrogenase Escherichia

Protoaphin

dehydratase

Wooly aphid Hausmann)

QSRTVol.27,No. I--D

coli

280

83

do

1.2

0.97

380

83

do

0.86

0.69

450

83

do

280

84

MW = 120,000.

(cyclising)

(Eriosoma lanigerum 18.0

15.0

Donald M. Kirschenbaum

48

Table h (Contd) a ZM x 10 -4

Protein

A 1% 1 cm

nm c

Ref.

Comments

Protease Crotalus

adamanteus

venom Monascus

kaolian~

2.4

8.8

280

85

MW = 23,749.

6.4

1.89

280

86

MW = 34,000.

10.8

280

87

MW = 35,000.

9

280

88

Pseudomonas malto~hilia Stre~tom[ces

3.8

~riseus

PNPAiHydrolase

I

PNPAiHydrolase Elastase-like

Stre~tom~ces

II enzyme

13

280

88

I

10.5

280

89

II

12.1

280

89

Ill

11.3

280

89

rectus

Proteinase

B

20.8

280

90

20.4

280

90

18.2

280

91

Protein Desulfovibrio

gigas

MO-(2Fe-2S)

0.97

462

92

q /cluster

of

(2Fe-2S);

six

clusters present. Desulfovibrio

africanus

MO-Fe-S protein

4.84

4.32

615

93

6.44

5.76

410

93

do

280

93

do

275-8

94

ii.0

276

95

11.7

276

95

50 mM Ph, pH 7.6; MW = 112,000.

14.1 Lumbricus

Ca++-binding Phaseolus Surface

protein

3.2

mun~o, black gram active protein

S1 $2 Anthozean

12.6

terrestris

coelenterate

Ca++-dependent

(Renilla reniformis)

modulator

protein

0.3384

1.9

276

96

7.5 mM Tris, EDTA,

5 mM

0.6 mM NAN3,

pH 7.8. MW = 18,750. Luciferin-binding

protein

4.7

446

97

1 mM Tris, EDTA,

pH 7.2.

Dry wt. 13.1

276

97

do

0.I mM

Proteins, molar absorptivity,

A IL~ cm

values

49

Table 1. (Contd) a

Protein

xlZM0-4

Al%b 1 cm

nmC

Ref.

50

498

98

MW

8.9

280

98

do

3.7

280

99

0.1 M NaPh, 0.1%

Comments

Green-fluorescent protein

27

=

54,000;

AA, interf. 4.8 Rhodos~rillum rubrum Chromatophores

SDS, pH 7.0. Data from Fig. 3 f. Sesame

($esamum indicum L.)

R-Globulin

10.8

280

i00

llS protein

7.9

280

101

7S protein

5.8

280

101

2S protein

7.2

280

i01

i.i

280

102

Data from Fig. 6 f.

1.61

276

103

MW = 9055 (104).

Soybeans

Porcine Plasma/urine Low mol. wt. protein Intestine

Ca++-binding protein

0.1454

Human Serum HPG-I j

13.8

278

105

HPG-2 j

1.9

280

105

6.56

9.5

280

106

M W = 69,000.

6.40

10.0

280

105

M W = 64,000.

17.5

280

[07

MW = 16,000.

Plasma Protein S Bovine Plasma Protein S Liver Highly acid protein BLA IV

2.8

Calf bone, decarboxylated ~ - c a r b o x y l g l u t a m i c acid protein

10.6

280

108

i1.4

280

[09

12.0

280

ii0

Chicken Muscle Parvalbumin Embryo fibroblast Cell surface protein

216

210

ii0

328

205

110

Donald M. Kirschenbaum

50

(Contd)

Table h ~aM x 10 -4

Protein

A1%

nm c

Ref.

1.9

277

iii

Biuret

1.5

277

iii

Dye b i n d i n g

Comments

1 cm

Rabbit skeletal muscle M o d u l a t o r protein

Virus,

intact m a t r i x p r o t e i n from n u c l e a r - p o l y h e d r o s i s virus

of the cabbage looper

(Tricho~lusia ni), Fraction I and

Fraction II after protein digestion FI

15.6

276

112

Lowry

FII

11.2

276

i12

Lowry

ii.i

276

112

Dry wt.

10.3

280

113

MW = 25,200.

280

114

N

280

115

20 mM Tris-HC1,

Protein m e t h y l a s e

II

(EC 2.1.1.24)

Horse e r y t h r o c y t e

2.6

Purine n u c l e o s i d e p h o s p h o r y l a s e

(EC 2.4.2.1)

Human e r y t h r o c y t e

9.64

Pyrocatechase I Pseudomonas sp. BI3

9.8

1 mMME,

pH 8.0.

Data from Fig. Pyruvate, phosphate dikinase Bacteroides s[mbiosus Pyruvate kinase

7.7

280

116

4.7

280

117

280

118

(EC 2.7.1.40)

Rhodamine sarcoma of rats Spleen type

(M2-type)

Retinoic acid-binding protein Bovine retina

2.09 k

Rat testis

5.0

350

i19

2.38

280

119

280

120

Retinol-binding protein Rat testis cytosol

14

Taurine:~-ketoglutarate transaminase Achromobacter su~erficialis

(EC 2.6.1.55)

7.20

280

121

2.72

9.7

275

122

MW = 28,000.

subunit

0.85

6.3

275

122

MW = 13,600.

subunit

1.87

13.2

275

122

MW = 14,140.

7.25

280

123

MW = 36,500.

Thyrotropin Bovine

~

Thyroxine-binding globulin Human serum

2.65

Toxin Scorpion

(Androctonus australis)

Toxin I

1.07

15.70

275

124

MW = 6822.

Toxin II

1.81

24.94

276

124

MW = 7249.

6f

Proteins, molar absorptivity, A I ~ values

51

Table I. (Contd) ~ Ma x 10 -4

Protein

Al%b 1 cm

nm c

Ref.

Comments £ _

Naja nasa siamensis Siamensis

3~ 3-nitrotyrosine

derivative

13

280

125

pH 6.7.

15

280

125

pH 6.5.

277

126

0.05 M AmC,

Nasa ni@ricolis Toxin ~ ~ 3-nitrotyrosine derivative Wasp

(Microbracon hebetor

Paralysing

toxin

(SAY)) 15.6

pH 9.2. Clostridium Tetanus

tetani toxin

Cell toxin

7.8

280

127

11.8

280

128

i00 ~4 AmB-Ac buffer,

Filtrate

toxin

12.4

280

128

11.3

280

128

pH 7.5.

do In sulfitolysisurea reaction medium.

Toxin T6

Toxin T7

80.01

278

129

0.07 M KPh, pH 7.0.

98.61

292

129

0.i N NaOH.

79.91

278

129

0.07 M KPh, pH 7.0.

95.4

292

129

0.1 N NaOH.

°eM is the molar absorptivity with units of M-l cm-~ and is either the value reported in the reference cited or calculated from the Ai1% cm value and the molecular weight. bAl~m is the absorption for a 1% solution in a 1 cm cuvet and is either the value reported in the reference cited or calculated from the em and the molecular weight. The relationship between eM, Aj cm, and molecular weight, MW, is - (At era) (MW).

CRefers to the wavelength cited and may not be the peak of the absorption band. aAbbreviations used and methods of protein determination. Abbreviations used: EDTA, ethylenediaminetetraacetic acid; NaPh, sodium phosphate; DTr, dithiothreitol; Ac, acetate; cAMP, cyclic Y, Y-adenosine phosphate; GSH, glutathione; Tris, trishydroxymethylaminomethane; AmB, ammonium bicarbonate; SDS, sodium dodecylsulfate; Mes, 4-morpholine ethane sulfonic acid, AmC, ammonium carbonate. Methods of protein determination: Dry wt., dry weight; N, nitrogen determination; AA, amino acid analysis; Interf., interferometry; Biuret, a colorimetric method; Lowry, a colorimetric method; Dyebinding, colorimetric method. eAbsorbance at 1 mg/ml at 280 nm was less than 0.08. tFigure found in reference cited. ~nc, not cited. hPer heme/17,000 daltons. ~PNPA, p-nitrophenylacetate. JHPG, hydroxyapatite passing globulin. kCalculated from tyrosine and tryptophan content. 'These values are for a 1% solution of nitrogen.

REFERENCES FOR TABLE I 1. E. G. Beale, J. R. Dedman, and A. R. Means, J. Biol. Chem. 252, 6322 (1977). 2. C. B. Klee and M. H. Krinks, Biochemistry 17, 120 (1978). 3. G. A. Nimmo and P. Cohen, Fur. J. Biochem. $7, 341 (1978). 4. J. Travis, D. Garner, and J. Bowen, Biochemistry 17, 5647 (1978). 5. T. Sasaki, J. Biochem., Tokyo 84, 267 (1978). 6. C. A. Ryan and A. K. Balls, Proc. Nat. Acad. Sci. 45, 1839 (1962). 7. R. Pannell, D. Johnson, and J. Travis, Biochemistry 13, 5439 (1974). 8. W. P. Abrams, P. Kimbel, and G. Weinbaum, Biochemistry 17, 3556 (1978). 9. O. Abe, J. Ohata, Y. Utsumi, and K. Kuromizu, J. Biochem., Tokyo 83, 1737 0978).

52

Donald M. Kirschenbaum

10. A. Kakinuma, H. Sugino, N. Moriya, and M. Isono, J. BioL Chem. 253, 1529(1978). 11. P. Bunning and H. Holzer, J. Biol. Chem. 252, 5316 (1977). 12. K, Inouye, B. Tonomura, K. Hiromi, S. Sato, and S. Murao, J. Biochem., Tokyo 82,961 (1977). 13. Y. Uehara, B. Tonomura, and K. Hiromi, 1 Biochem., Tokyo 84, 1195(1978). 14. C. B. Glaser and L. Karic, Int. J. Prot. Pep. Res. 12, 284 (1978). 15. M. J. Swartz, H. L. Mitchell, D. J. Cox, and G. R. Reeck, J. Biol. Chem. 2S2, 8105 (1977). 16. A. P. Banerji and K. Sohonie, Enzymologia 36, 137 (1969). 17. S. P. Wood, I. J. Tickle, T. L. Blundell, A. Wollmer, and D. F. Steiner, Arch. Biochem. Biophys. 186, 175 (1978). 18. G. F. Seelig and R. F. Colman, Arch. Biochem. Biophys. 188, 394 (1978). 19. M-F. Carlier and D. Pantaloni, Fur. J. Biochem. 37, 341 (1973). 20. D. V. Banthorpe, S. Doonan, and J. A. Gutowski, Arch. Biochem. Biophys. 184, 381 (1977). 21. J. D. Corbin, P. H. Sugden, L. West, D. A. Flockhart, T. M. Lincoln, and D. McCarthy, J. Biol. Chem. 253, 3997 (1978). 22. T. Nakayasu and S. Nagasawa, J. Biochem., Tokyo 85, 249 (1979). 23. R. Branden, B. G. Malmstrom, and T. Vanngard, Eur. J. Biochem. 36, 195 (1973). 24. R. Branden and J. Deinum, Biochim. Biophys. Acta 524, 297 (1978). 25. S. C. Froehner and K. E. Eriksson, J. Bact. 120, 458 (1974). 26. A. V. Emes, M. J. Gallimore, A. W. Hodson, and A. L. Lather, Biochem. J. 243, 453 (1974). 27. P. A. Sullivan, Y. S. Choong, W. J. Schreurs, J. F. Cutfield,and M. G. Shepherd, Biochem. 3".165,375 (1977). 28. W. F. Line, D. A. Sly, and A. Bezkorovainy, Int. J. Biochem. 7, 203 (1976). 29. E. W. Voss Jr, J. L. Fryer and G. M. Banowetz, Arch. Biochem. Biophys. 186, 125 (1978). 30. C. H. Wei and C. Koh, J. Mol. Biol. 123, 707 (1978). 31. B. A. Baldo, W. H. Sawyer, R. V. Stick, and G. Uhlenbruck, Biochem. J. 175, 467 (1978). 32. i. N. Bauch and R. D. Poretz, Biochemistry 16, 5790 (1977). 33. P. Lehtovaara, Acta Chem. Scand. 31B, 21(1977). 34. T. Ohshima, H. Misono, and K. Soda., J. Biol. Chem. 253, 5719 (1978). 35. T. Tachiki and T. Tochikura, Arg. Biol. Chem. 40, 2187 (1976). 36. M. Sugiura and T. Oikawa, Biochim. Biophys. Acta 409, 262 (1977). 37. D. H. Ohlendoff, G. R. Barbarash, A. Trout, C. Kent, and 1. Barmszak, I. Biol. Chem. 252, 7992 (1977). 38. O. Shimonura, T. Masugi, F. H. Johnson, and Y. Haneda, Biochemistry 17, 994 (1978). 39. H. Misono and K. Soda, J. Biochem., Tokyo 82, 535 (1977). 40. L. Lundvik, F. Lustig, and L. Rymo, Acta Chem. Scand. 31B, 95 (1977). 41. G. M. Malinina, I. A. Cherkasov, N. A. Kravchenko, and V. A. Berestov, Biochemistry (Biokhimiya trans.) 42, 680 (1977). 42. S. K. Gayen, S. Som, N. K. Sinha, and A. Sen, Arch. Biochem. Biophys. 183, 432 (1977). 43. M. L. Elwell and J. A. Schellman, Biochim. Biophys. Acta 494, 367 (1977). 44. K. Tamanaka, K. Izawa, and K. Temmizu, Agr. Biol. Chem. 41, 1695 (1977). 45. J. A. Duine, J. Frank, and J. Westerling, Biochim. Biophys. Acta 524, 277 (1978). 46. R. N. Patel, C. T. Hou, and A. Felix, J. Bact. 133,641 (1978). 47. A. M. Wadzinski and D. W. Ribbons, J. Bact. 122, 1364(1975). 48. B. Ekstrom and I. Berggard, 1 Biol. Chem. 252, 8048 (1977). 49. R. Cigen, J. A. Ziffer, B. Berggard, B. A. Cunningham,and I. Berggard, Biochemistry 17, 947 (1978). 50. J. R. Quinn and A. M. Pearson, J. Food Sci. 29, 429 (1964). 51. S. K. Wolf, D. A. Watts, and W. D. Brown, J. Agric. Food Chem. 26, 217 (1978), 52. T. Nakanishi and M. I. Izumimoto, Agr. Biol. Chem. 36, 1505(1972). 53. K. R. H. Read, Comp. Biochem, Physiol. 25, 81 (1968). 54. K. R. H. Read, Comp. Biochem. Physiol. 22, 1 (1967). 55. W. F. Stafford III and A. G. Szent-Gyorgi,Biochemistry 17, 607 (1978). 56. P. D. Chantler and A. G. Szent-Gyorgi, Biochemistry 17, 5440 (1978). 57. S. S. Margossian and S. Lowey, Biochemistry 17, 5431 (1978). 58. F. Huriaux and B. Focant, Arch. Int. Physiol. Biochim. 85,917 (1977). 59. N. Maeda and N. Tamiya, Biochem. J. 175, 507 (1978). 60. T. Kido, K. Soda, and K. Asada, J. Biol. Chem. 253, 226 (1978). 61. J. S. Twu, R. K. Haroz, and R. K. Bretthauer, Arch. Biochem. Biophys. 184, 249 (1977). 62. M. A. Qasim and A. Salahuddin, Biochim. Biophys. Acta 536, 50 (1978). 63. P. I. Clark and G. Lowe, Eur. J. Biochem. 84, 293 (1978). 64. J. J. Chang and A. Holtzer, Arch. Biochem. Biophys. 185, 488 (1978). 65. L. N. Lin and J. F. Brandts, Biochemistry 17, 4102 (1978). 66. A. Piront and C. Gerday, Comp. Biochem. Physiol. 46B, 349 (1973). 67. H. D. Campbell, D. A. Dionysius, D. T. Keough, B. E. Wilson, J. De Jersey, and B. Zerner, Biochem. Biophys. Res. Commun. 82, 615 (1978). 68. R. Jones, M. B. Wilkins,J. R. Coggins,C. A. Fewson, and A. D. B. Malcolm, Biochem. J. 175, 391 (1978). 69. G. Colombo, G. M. Carlson, and H. A. Lardy, Biochemistry 17, 5321 (1978). 70. A. H. J. Ullah and V. P. Cirillo, Z Bact. 131,988 (1977). 71. K. H. Cass and E. Stellwagen,Arch. Biochem. Biophys. 171,682 (1975). 72. K. Uyeda and S. Kurooka, I. Biol. Chem. 245, 3315 (1970). 73. G. A. Grant, L. M. Keefer, and R. A. Bradshaw, Z Biol. Chem. 253, 2724 (1978). 74. W. K. Krietsch, I. U. Freier, and S. W. Eber, Arch. Biochem. 193, 415 (1979). 75. F. M. Van Wezel, A. J. Slotboom, and G. De Haas, Biochim. Biophys. Acta 452, 101 (1976). 76. A, J. Slotboom, E. H. J. M. Jansen, H. Vlijm, F. Pattu, P. Soares de Araujo, and G. H. De Haas, Biochemistry 17, 4593 (1978). 77. R. K. Bhat, T. Smith, L. Greer, and R. F. Steiner, Arch. Biochem. Biophys. 190, 677 (1978). 78. J. Trinick and S. Lowey, I. Mol. Biol. 113, 343 (1977). 79. V. Piglet and R. R. Conley, J. Biol. Chem. 253, 1910(1978). 80. K. Yoshiwara, T. Hashida, Y. Tanaka, H. Ohgushi, H. Yoshihara, and T. Kamiya, Z Biol. Chem. 253, 6459 (1978).

Proteins, molar absorptivity, Al~mvalues

53

81. M. K. Bhat, K. Sreekrishna, and H. R. Cama, Ind. J. Biochem. Biophys. 14, 125 (1977). 82. L. Carlsson, L-E. Nystrom, I. Sundkvist, F. Markey, and U. Lindberg, J. Mol. Biol. 115, 465 (1977). 83. R. C. Scarpulla and R. L. Softer, Z Biol. Chem. 253, 5997 (1978). 84. D. W. Cameron, W. H. Sawyer, and V. M. Trikojus, Austral. J. Biol. Sci. 30, 173 (1977). 85. T. Kurecki, M. Laskowski St., and L. F. Kress, J. Biol. Chem. 253, 8340 (1978). 86. M. S. Tsai, T. H. Hseu and Y. S. Shen., Int. J. Prot. Pep. Res. 12, 293 (1978). 87. R. S. Boethling, J. Bact. 121,933 (1975). 88. S. Wahlby, Biochim. Biophys. Acta 185, 178 (1%9). 89. A. Gertler and M. Trop, Eur. J. Biochem. 19, 90 (1971). 90. P. Borgia and L. L. Campbell, J. Bact. 120, 1109 (1974). 91. K. Mizusawa and F. Yoshida, J. Biol. Chem. 247, 6978 (1972). 92. J. J. G. Moura, A. V. Xavier, R. Cammack, D, O, Hall, M. Bruschi, and J. Le Gall, Biochem. J, 173, 419 (1978). 93. E. C. Hatchikian and M. Bruschi, Biochem. Biophys. Res. Comm. 86, 725 (1979). 94. D. M. Waisman, F. C. Stevens, and J. H. Wang, J. Biol. Chem. 253, 1106(1978). 95. N. S. Sucheelamma and M. V. L. Rao, Int. J. Pep. Prot. Res. 12, 93 (1978). 96. H. P. Jones, J. C. Matthews, and M. J. Cormier, Biochemistry 15, 55 (1979). 97. H. Charbonneau and M. J. Cormier, J. Biol. Chem. 254, 769 (1979). 98. W. W. Ward and M. J. Cormier, .I. Biol Chem. 254, 781 (1979). 99. J. Miyake, S. Ochiai-Yanagi,T. Kasumi, and T. Takagi, J. Biochem., Tokyo 83, 1679(1978). 100. T. S. Lakshmi and P. K. Nandi, Int. J. Pep. Prot. Res. 12, 197 (1978). 101. A. G. Appu Rao and M. S. Narasinga Rao, Prep. Biochem. 7, 89 (1977). 102. U. Ravnskov and B. G. Johansson, Int. J. Biochem. 7, 579 (1976). 103. K, J. Borrington, D. I. C. Kells, A. J. W. Hitchman, J. E. Harrison, and T. Hofmann, Can. J. Biochem ~ , 492 (1978). 104. T. Hofmann, M. Kamakami, H. Morris, A. J. Hitchman, J. E. Harrison, and K. J. Dorrington, Calcium Binding Protein and Calcium Function (Edited by R. H. Wasserman) p. 73. North-Holland, New York (1977). 105. H. Bohn, and W. Winckler, Blut 35, 305 (1977). 106. R. G. Discipio and E. W. Davie, Biochemistry 18, 899 (1979). 107. T. Kato, Y. Kato, H. Kasai, and Okuyama, J. Biochem., Tokyo 82, 1297 (1976). 108. J. W. Poser and P. A. Price, J. Biol. Chem. 254, 431 (1979). 109. C. W. Heizmann and E. E. Strehler, J. Biol. Chem. 254, 4296 (1979). ll0. S. S. Alexander Jr., G. Colonna, K. M. Yamada, I. Pastan, and H. Edelhoch, J. Biol. Chem. 253, 5820 (1978). 111. M. Yazawa, H. Kuwaya, and K. Yagi, J. Biochem., Tokyo 84, 1235(1978). 112. D. A. Eppstein and J. A. Thoma, Biochem. J. 167, 321 (1977). 113. E. T. Polastro, M. M. Deconinck, M. R. Devogel, E. L. Mailier, Y. B. Looza, A. G. Schnek, and J. Leonis, Biochem, Biophys. Res. Commun. 81,920 (1978). 114. J. D. Stoeckler, R. P. Agarwal, K. C. Agarwal, K. Schmid, and R. E. Park, Biochemistry 17, 278 (1978). 115. E. Dorn and H-J. Knackmuss, Biochem. J. 174, 73 (1978). 116. H. Yoshida and H. G. Wood, J. Biol. Chem. 253, 7650 (1978). 117. Y. Nagao, T. Toda, K. Miyazaki, and T. Horio, J. Biochem., Tokyo $2, 1331 0977). 118. J. C. Saari, S. Futterman, and L. Bredberg, J. Biol. Chem. 253, 643 (1978). 119. D. E. Ong and F. Chytil, J. Biol. Chem. 253, 4551 (1978). 120. A. C. Ross, Y. I. Takahashi and D. S. Goodman, J. Biol. Chem. 253, 6591 (1978). 121. S. Toyama, H. Misono, and K. Soda, Biochim. Biophys. Acta 523, 75 (1978). 122. J. C. Pernollet, J. Garnier, J. G. Pierce, and R. Salesse, Biochim. Biophys. Acta 446, 262 (1976). 123. K. Sterling, S. Hamada, Y. Takemura, M. A. Brenner, E. S. Newman, and M. Inada, J. Clin. lnves. 50, 1758(1971). 124. C. Rochat, H. Rochat, F. Miranda, and S. Lissitzky, Mem. lnstit. Butantan. Simp. Int. 33, 447 (1976). 125. E. Karlsson and J. Sundelin, Toxicon 14, 295 (1976). 126. B. J. Visser, W. Spanjer, H. Deklonia, T. Piek, C. Van Dermeer, and A. C. M. Van Der Drift, Toxicon 14, 357 (1976). 127. S. G. Murphy, T. H. Plummer, and K. D. Miller, Fed. Am. Soc. Exp. Biol. 27, 268, abstract No. 298 (1968). 128. C. J. Craven and D. J. Dawson, Biochim. Biophys. Acta 317, 277 (1973). 129. B. Bizzini, A. Turpin, and M. Raynaud, Ann, lnstit. Past. 116, 668 (1969).