SURVEY OF EXPERIMENTAL WORK ON HETEROJUNCTIONS

SURVEY OF EXPERIMENTAL WORK ON HETEROJUNCTIONS

CHAPTER 8 SURVEY OF E X P E R I M E N T A L WORK ON HETEROJUNCTIONS As CAN be seen from the previous chapter, the utilization of more and more semico...

2MB Sizes 74 Downloads 92 Views

CHAPTER 8

SURVEY OF E X P E R I M E N T A L WORK ON HETEROJUNCTIONS As CAN be seen from the previous chapter, the utilization of more and more semiconductor heterojunctions for device fabrication has led to numerous experimental studies of heterojunctions. In spite of a few review articles, much of the information regarding the methods used for fabricating various heterojunctions lies scattered in literature. In this chapter an attempt is made to survey the reported work on various heterojunctions by tabulating the experimental details, such as the type of heterojunction, the substrate used, the method of preparation and the measured properties, in Tables 8.1 and 8.2. The first table contains information pertaining to abrupt heterojunctions fabricated by using elemental and compound semiconductors while the second table deals with abrupt heterojunctions having mixed crystals and ternary compounds as one or both constituents.

157

SEMICONDUCTOR HETEROJ UNCTION S TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS

Heteroj unction

Type Substrate

Method of preparation

Comments

Refs.

IV-IV Ge-Si

158

p-n n-p

Si

Heteroj unction formed by alloying Ge on Si in H2 atmosphere

Negative resistance and hysteresis observed Phonon spectroscopy of Q?)Ge(«)Si tunnel heterodiode

1,2 3

n-n

Si

Heterodiodes fabricated by growing Ge on Si substrate using Ge-I 2 disproportionation reaction

/-Fand photovoltaic response studied

p-n

Si

Ge grown on Si by open tube Ge-I 2 disproportionation vapour-transport process and by solution growth process

Growth parameters 6-9 discussed and I-V, C-Kand photovoltaic properties reported

n-n p-p

Si

Ge grown on Si by open tube Ge-I 2 disproportionation vapour-transport process

10 I-V reported and interface states in abrupt heteroj unction discussed

n-n n-p

Si

Ge deposited by halide reduction open-tube process on Si substrate held above the selfreducing temperature (-1100°C)

11, 12 High-speed n-n heterodiodes fabricated and switching times measured

p-n

Si

Ge grown on Si by an opentube halide-reduction process

/ - V measured

13

n-n

Si

Heterodiodes made by alloying technique of Shewchun and Wei(2)

I-V, C-Kand photoresponse reported

14

n-p p-n

Si

Heteroj unction prepared by alloying technique

Interface states studied by electrical measurements and electron-probe analysis

15

n-n

Si

Temperature-gradient alloy technique(16)

I-V, noise and admittance measurements reported

17

n-n

Si

Heteroj unction prepared by melt Electrical properregrowth process(18> ties measured

4,5

19

SURVEY OF EXPERIMENTAL WORK

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Ge-Si (cont.)

Type Substrate

Method of preparation

Comments

Refs.

I-V characteristics at different temperatures reported Suitable as fast switching diodes

20,21

Alloyed heteroj unctions prepared by melting Ge on Si at 1000°C

Uniaxial stress effects studied

22

Si

Epitaxial deposition of Ge on Si by hydrogen reduction of GeCl4 in an open-tube system

I-V Sit different 23 temperatures reported and switching properties studied 24 Electrical and optical properties reported

n-n p-p

Si

Ge pellet alloyed on Si substrate

25-27 I-V, C-Kand photo effects in n-n heterojunction studied p-p heteroj unctions showed ohmic behaviour

p-n

Si

Abrupt heterojunction prepared by alloying technique

I-V reported

28

p-n

Si

Epitaxial film of Ge deposited on Si substrate by vacuum evaporation technique (substrate temp. 650-800°C)

/ - V reported

29

n-n

Si

Heteroj unctions fabricated by epitaxial deposition of Ge on Si by vapour-growth iodide method and by alloying method (chloride reduction)

I-V, C-Kand photoelectric characteristics reported

30,31

p-p

Si

Heteroj unctions prepared by vacuum evaporation of Ge on Si

I-V and C-V meas- 32 ured at different temperatures

p-n

Si

Ge grown on Si by vapour transport interface alloying process using GeCl4

Structure and electrical properties reported

p-n

Si

p-n

Si

n-n

Heterojunction grown by alloying technique

33

159

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Ge films grown via pyrolysis of GeH 4 -H 2 mixture on thin film of Si grown on sapphire or spinel substrates

Electrical and optical properties of p~ and «-type Ge films studied

34

Refs.

Ge-Si (cont.)



Ge(amorphous)Si



Si

Amorphous Ge grown on Si by vacuum-evaporation technique

I-V and C-V reported

35

Ge-Te

n-p

Ge

Heteroj unctions fabricated by alloying Te on Ge substrate in H 2 atmosphere

p-i-n structure reported and /-Fand spectral response measured

36

Si-Te

n-p

Si

Te vacuum evaporated on Si substrate and then heated to ~ 360°C in argon atmosphere

/-Kand C-V reported

37

Ge-ZnO

n-n

Ge

ZnO films deposited by thermal decomposition of zinc propionate in vacuum

I-V characteristics measured

38

Ge-ZnS

p-n

Ge

Epitaxial film of ZnS grown on Ge by vacuum evaporation

39 Growth studies, electrical, photoelectrical and electroluminescent properties investigated

Ge-ZnSe

p-n

Ge

Epitaxial layer of ZnSe grown on Ge by close-spaced HC1 transport process

Growth rates and / - V reported

40

7-Kand switching characteristics reported

41,42

Sapphire or Spinel

IV-VI

IV-(II-VI)

160

p-n

Ge (p-n)

p-n

Ge

Epitaxial layer of ZnSe grown on /7-diffused τι-type Ge by close-spaced HO transport process

n-p-n transistor 43-5 fabricated and its electrical properties reported

Epitaxial layer of ZnSe deposited on /7-type Ge substrate by vacuum-evaporation technique

Growth, electrical and photoelectrical properties discussed

46

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

Ge-ZnSe (cont.)

p-n

Ge

ZnSe layers grown on Ge by closed-tube iodide disproportionation reaction process and by direct process

Electrical and photoelectrical properties reported

47,48

Ge-ZnTe

n-p

Ge

ZnTe films vacuum evaporated on Ge

I-V9 C-Vand photoelectrical properties reported

49

n-p

Ge

Layers of ZnTe grown on Ge by vacuum-evaporation technique

Open-circuit voltage and spectral response reported

50

n-n

Ge

Heterojunction prepared by vacuum evaporation of CdS on Ge (substrate temp. 50-300°C)

I-V studied

51

n-n

Ge

CdS films evaporated on Ge substrate maintained at ~200°C

Electrical properties and switching times investigated

52

Ge

Epitaxial growth of CdS on Ge using H 2 as transporting agent in an open-tube system

Growth studies reported

53

n-n

Ge

CdSe film vacuum deposited on Ge substrate maintained at 300°C

Photoresponse variation with bias studied Heterodiode used as null detecting pyrometer and frequency meter

54-6

n-n

Ge

CdSe film vacuum deposited on Ge (substrate temperature between 50-300°C)

Electrical properties studied

51

n-n

Ge

CdSe film deposited on Ge by vacuum-evaporation technique

/ - V reported

57

n-p

Ge

CdTe films vacuum evaporated on Ge

I-V, C-Vand photoelectrical properties reported

49

n-p

Ge

Layer of CdTe grown on Ge by vacuum-evaporation technique

Open-circuit voltage and spectral response reported

50

Ge-CdS

~ Ge-CdSe

Ge-CdTe

161

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

Si-ZnO

n-n

Si

ZnO films deposited by thermal decomposition of zinc propionate in vacuum

l-V characteristics reported

Si-ZnS

n-n p-n

Si

Epitaxial layer of ZnS deposited on Si by vacuum-evaporation technique

Growth parame58,59 ters reported and structural aspects and electrical properties discussed

Si

Epitaxial layer of ZnS grown on Si by open-tube flow method using H2 as the reactive transport agent

Growth parameters studied

60

n-n p-n

Si

ZnS deposited on Si by condensation of vapour sublimed from ZnS source in a ultrahigh-vacuum system

Epitaxial layers investigated by various techniques

61,62

n-n

Si

ZnS films deposited on Si by vacuum-evaporation technique^*0

63 Defects in epitaxial layers studied

n-n

Si

Heterojunction fabricated by a closed-system chemical-transport process

/-Fand photoresponse measured

64

p-n

Si

ZnSe films grown on Si by vacuum-evaporation technique

Open-circuit voltage and spectral response reported

50



Si

Epitaxial film of ZnSe deposited on Si by vacuum evaporation

Growth studies reported

61

n-p P-P

Si

Heteroj unctions prepared by vacuum evaporation of ZnTe at optimum substrate temperatures on Λ- and /?-type Si substrate

l-V measured

65

n-p P-P

Si

ZnTe layers grown on Si by vacuum evaporation technique

Open-circuit volt- 50 age and spectral response reported

Si-CdO

j n-p

Si

CdO film formed on Si by reactive sputtering of Cd

Electrical and optical properties reported

66

Si-CdS

p-n n-n

Si

Heteroj unctions prepared by vacuum evaporation of CdS on Si

Electrical and photovoltaic properties investigated

67,68

Si-ZnSe

Si-ZnTe

162

38

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

p-n

Si (P-n)

High resistivity CdS films evaporated in vacuum onto ptype Si layer obtained by B diffusion on «-type Si wafer

69 Heterojunction n-p-n triode fabricated and properties measured

p-n

Si (P-n)

CdS film evaporated onto silicon planar p+-n structure

Transistor action reported

70

p-n

Si

Films of CdS grown on Si by vacuum-evaporation technique

Open-circuit voltage and spectral response reported

50

n-n

Si

CdSe film vacuum evaporated on Si

I-V characteristics measured

57

p-n

Si

Films of CdSe grown on Si by vacuum-evaporation technique

Open-circuit voltage and spectral response reported

50

p-n

Si

CdSe film vacuum evaporated on Si

Electrical and photoelectrical properties reported

71

n-p P-P

Si

Heterojunctions prepared by vacuum evaporation of CdTe at optimum substrate temperatures on n- and p-type Si

I-V measured

65

P-P

Si

Heterojunctions made by evaporating CdTe onto vacuum cleaved Si

Opto-electronic properties reported

56

n-p P-P

Si

CdTe film deposited on Si by vacuum-evaporation technique

Open-circuit voltage and spectral response reported

50

Ge-BN

Ge

BN deposited on Ge using reaction between diborane and ammonia at 600-1000°C in H 2 or inert gas atmosphere

Application as thin 72 film varistor discussed

Ge-AlSb

Ge

AlSb flash evaporated onto Ge

Growth and lattice 73 parameters of the films reported

Si-CdS (cont.)

Si-CdSe

Si-CdTe

iv-on-v)

163

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Ge-GaP

Ge-GaAs

164

Type Substrate

Method of preparation

Comments

Refs.

n-n p-n

GaP

Ge epitaxially grown on GaP by iodide disproportionation reaction in a closed tube

Electrical, optical and photovoltaic properties studied

74-6

n-n

Ge

GaP epitaxially grown on Ge using an open-tube (Ga-PCl3-H2) transport system

Growth parameters studied and used for making GaP LEDs

77,78

n-n p-n

Ge

Epitaxial films of GaP grown on Ge using an open-tube (Ga-PCl3-H2) transport system

Interface barriers 79 and opto-electronic properties investigated

p-n

Ge

Epitaxial films of GaP deposited on Ge by HC1 vapour-transport technique

l-V characteristics reported

80

n-n

Ge

GaP grown on Ge by iodide method in an open-tube system

Electrical and photoelectrical properties reported

81



Ge

GaP flash evaporated onto Ge

Growth investigated 73,82

n-p

GaAs

Ge deposited epitaxially onto Tunnel diodes fabGaAs by iodide disproportionricated and l-V ation reaction(83) using openmeasured tube system

p-n n-p n-n p-p

GaAs

Ge deposited epitaxially onto GaAs by iodide process*84' 8e)

l-V, C-Kandop- 87-9 toelectrical properties investigated

p-n

GaAs

Ge grown on GaAs by iodide disproportionation reaction using closed-tube system

p-n-p optical tran- 90 sistor fabricated and opto-electrical properties studied

n-n

GaAs

Epitaxial growth of Ge onto GaAs using the open-tube iodide process

Tunnelling proper- 91 ties reported

p-n

Ge

GaAs deposited epitaxially onto Ge using closed-tube iodide process

Growth parameters studied

92

Ge

Epitaxial film of GaAs grown on Ge by vapour phase in a sealed tube containing HC1

Growth parameter as a function of temp, and HC1 pressure discussed

93

84,85

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Ge-GaAs (cont.)

Substrate

Method of preparation

GaAs

Ge epitaxially grown on GaAs by open-tube iodide process00 and by solution growth process(7)

Growth parameters 6,8 and photovoltaic properties investigated



Ge

GaAs flash evaporated on Ge

Growth parameters studied

73



Ge

GaAs deposited on Ge by flashevaporation technique

Growth parameters reported

94

p-n

Ge

Cathodic sputtering of GaAs onto Ge (threshold temp, for epitaxial growth ^550°C)

n-n

GaAs

Epitaxial growth of Ge onto GaAs by open-tube iodide process

Transient properties measured

p-n

GaAs

Ge pellet alloyed onto GaAs wafer

p-i-n structure 97 formed and I-V, C-V measured

p-n n-p n—n

GaAs

Heterojunctions formed by interface-alloy technique

I-V reported

98

p-n n-n

Ge

GaAs grown onto Ge by opentube HC1 vapour-transport technique

7- V reported

80

p-n n-p n-n

GaAs

Epitaxial deposition of Ge onto GaAs by vacuum-evaporation technique

I-V, C-Kand photoelectrical properties measured

99

p-n n-n

GaAs

Ge deposited onto GaAs by iodide process

I-V ana C-V repotted

100

p-n

GaAs

Epitaxial Ge film deposited on GaAs by vacuum evaporation

Growth parameters studied

101

p-n

Ge

Heterojunctions fabricated by close-spaced iodide process

n-p

GaAs

n-p n-n

Ge

Type p-n n-p

Comments

Refs.

95

96

p-p

p-p

Ge deposited epitaxially onto GaAs by closed-tube iodide process GaAs deposited onto Ge by vapour-transport technique



102

Photo-effects under reverse bias studied and uses discussed

103, 104

Electrical and structural properties of epitaxial film reported

105

165

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction | Type Substrate Ge-GaAs (cont.)

Method of preparation

Comments

Refs.

p-n

Ge

Epitaxial layer of GaAs grown by close-spaced technique without using transport agent(106)

I-Vand C-V reported

107

p-n n-p

Ge

GaAs grown onto Ge by closedtube iodide process

Growth parameters studied

108

Ge

Epitaxial GaAs films grown on Ge by water-transport closespaced technique

Growth parameters studied

109

p-n

GaAs

Heterojunctions prepared by alloying technique

/-Fand C-V reported

28

n-p

Ge

Epitaxial layer of GaAs deposited on Ge by open-tube HC1 vapour-transport method

Tunnel diode fabricated

110



Ge

GaAs films vacuum deposited on Ge by a three-temperaturezone technique

Film properties investigated

111

GaAs

Ge layer deposited on GaAs by liquid-phase epitaxy

Structural properties, I-V and C-V reported Tunnelling spectroscopy of p-n and n-p heterojunctions discussed

112-4

p-p

p-n n-p

166

Epitaxial layer of GaAs grown Wide band gap on the diffused p-typc surface of n-p-n transistor w-type Ge by close-spaced HC1 fabricated and transport method electrical properties reported

115

Ge

GaAs grown on Ge by closespaced HC1 vapour-transport method

Autodoping effects at the interface studied

116

Ge GaAs

(/?)Ge-(«)GaAs junctions fabricated by depositing GaAs on Ge using a close-spaced HC1 system and (/i)Ge(/?)GaAs using an I 2 system

Electrical proper- j 117 ties of heterojunction diodes and transistors discussed

Ge

GaAs films deposited onto Ge by flash-evaporation technique

Transmission and photoconductivity studied

p-n

Ge (P-n)

p-n n-n p-n n-p

118

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Ge-GaAs (cont)

Ge-GaSb

Type Substrate

Ge-InSb

Si-AIN

Refs.

GaAs

Heterodiodes fabricated by evap- Electro-optical orating Ge on GaAs studies reported

119

p-n

GaAs

Heteroj unctions fabricated by depositing Ge on GaAs by liquid epitaxy

Electro-absorption studied

120

n-p

GaAs

Epitaxial layers of Ge grown on GaAs by iodide process (open-tube)

Interface studies reported

121

p-n p-p

GaAs

Heterojunction epitaxial layers grown from eutectic solutions (liquid-phase epitaxy)

Growth mechanism discussed

122

Ge

GaSb flash evaporated on Ge

Growth parameters reported

73

Ge

InP films deposited onto Ge by vapour transport of indium and phosphorus chloride in argon atmosphere

Film structure studied

123



Ge

InP films deposited on Ge by flash-evaporation technique

Growth parameter reported

73



Ge

InAs sputtered on Ge substrate

Electrical properties of film studied

124



Ge

InAs flash evaporated onto Ge

Growth parameters reported

73



Ge

InSb flash evaporated onto Ge

Growth parameters reported

73

Si

BN deposited on Si using reaction between diborane and ammonia at 600-1000°C in H 2 or inert gas atmosphere

Application as thin film vanstor discussed

72

Si

BN films prepared by reactive sputtering in an ultra-highvacuum system on Si

Structural, optical and dielectric properties of the films studied

125

Si

BP films deposited by hydrogen reduction of the halide in He atmosphere

Growth parameters discussed

126

Si

A1N films deposited by the ammonolysis of Α10 3 ·χΝΗ 3 on Si in a temperature range of 900-1350°C

Film structure studied

127



Si-BN

Si-BP

Comments

p-n

Ge-InP

Ge-InAs

Method of preparation



167

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Si-AIN (cont.)

Si-AlP

Si-GaP

Method of preparation

Comments

Si

A1N films prepared by reactive sputtering in an ultrahigh vacuum system on Si

Structural, optical and dielectric properties of the films studied

125

Si

AIP layers epitaxially grown on Si by using an open-tube vapour-transport technique

Growth parameters and I-V characteristics reported

128

Si

AIP films grown on Si by vapour-transport method using aluminium and phosphorus gases

Film structure and growth parameters studied

129

Si

AIP grown epitaxially by vapourphase transport process using phosphorus vapour in a H 2 stream

Growth parameters discussed

130

n-p n-n P-P

GaP

Si epitaxially grown onto GaP by closed-tube disproportionation process using Te as carrier

Electrical and op- 131 to-electrical properties measured

p-n

GaP

Heterojunctions fabricated by either using solution-growth technique or pyrolytic decomposition of Si on GaP

Growth parameters and electrical properties discussed

117

Si

GaP epitaxial layers grown from eutectic solutions (liquidphase epitaxy)

Growth mechanism discussed

122

Si

Epitaxial films of GaP deposited onto Si by evaporation in an H2 atmosphere

Growth studies reported

132

Si

GaP grown on Si by thermal decomposition of a gas-phase mixture of gallium triethyl and phosphorus triethyl

Structural studies reported

133

Si

Growth parameGaP grown on i?-type Si by ters studied chemical-transport reaction using HC1 as transporting agent

Si

Electrodeposition of GaP on Si by using fluoride and chloride salts

135 Growth parameters and physical properties studied

Si

Heteroj unctions prepared by travelling solvent method using liquid Ga as molten zone

Electrical and photoelectrical properties investigated

Type Substrate



p-n

"

Si-GaAs

168

n-n p-n

Refs.

134

136

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.



Si

InAs sputtered onto Si substrate

Electrical properties of films studied

124

n-n

Si

InAs films vacuum deposited on high resistivity Si by threetemperature technique

Effective electron mass and optical band gap of films determined

137

n-p

Si

Electrical properInSb films deposited onto Si by ties of the hetethe flash-evaporation technique roj unctions reported

p-n

Si

InSb films deposited by flash evaporation onto heated Si substrate in ultra-high-vacuum

/ - F a n d C-Vreported

139

Ge-In 2 0 3

n-n

Ge

Heteroj unctions prepared by chemical-growth process

Growth parameters and electrical properties reported

140, 141

Si-In 2 0 3

n-n

Si

l n 2 0 3 films grown onto Si by chemical-growth process

Electrical properties investigated

140

SiC

Heteroj unctions fabricated by depositing Ge on SiC

Electrical properties reported

142

p-n p-p

Si

Epitaxial films of SiC grown on Si by vapour-phase decomposition and H 2 reduction of SiCl4 and propane

Structural proper- 143 ties of the films reported and 7-Kand photoresponse of heterodiodes measured

n-n

SiC

Epitaxial growth of Si on SiC by pyrolysis of silane in an open-tube system

Growth parameters studied

144

p-n p-p

Si

SiC films deposited on Si by H 2 reduction and subsequent pyrolysis of chlorosilanes

/-V and C-V investigated

145

Heteroj unctions fabricated by depositing Si on SiC

Electrical properties reported

142

Si-InAs

Si-InSb

138

IV-(HI-VI)

iv-av-iv) Ge-SiC Si-SiC

12



169

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

IV-(IV-VI) n-p P-P

Ge

Epitaxial films of PbS deposited onto Ge from a water solution of reacting chemicals at room temperature

Photovoltaic properties reported

n-p P-P

Ge

Films of PbS grown on Ge from a water solution of reacting chemicals at room temperature

I-V characteristics 147, 148 and photovoltaic spectral response at different temperatures studied

Si-PbS

n-p

Si

Epitaxial films of PbS grown on Si by water solution of reacting chemicals at room temperature

Electrical and photovoltaic properties reported

149

Si-PbSe

n-p P-P

Si

Heteroj unctions made by depositing PbSe onto Si wafer in a high pH aqueous solution at room temperature

I-V characteristics and spectral response measurements reported

150



Te

Epitaxial films of Se grown on Te by vacuum evaporation technique(151)

Growth parameters, /-Fand C- V reported

152

Te

Se single-crystal films grown on Te from vapour phase

Structural properties offilmsreported Cd-Se-Te structure fabricated and I-V measured

153-5

Te

Se single-crystal films grown on Te by vacuum evaporation technique

Se film piezoelectric transducers fabricated

156, 157

Te

Single-crystal films of Se grown on Te from vapour phase

Electrical properties of films studied

158

159

Ge-PbS

146

VI-VI Se-Te



Se-ZnSe

p-n

Se

Heteroj unctions fabricated by evaporating Zn on Se rectifiers

7-Kand C-V reported

Se-CdS

p-n

Se

CdS films evaporated onto crystallized Se substrates

Electrical proper160 ties and effect of CdS resistivity on Se-CdS rectifiers reported

170

SURVEY OF EXPERIMENTAL WORK.

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

Se-CdS (cont.)

p-n

Al

Thin layer of Se vacuum evaporated on a Ni-plated Al substrate and heated in air. CdS film then deposited on Se film

Electrical, optical and photovoltaic properties studied

161

Se-CdSe

p-n

Glass

Heterodiode formed by deposElectrical properiting CdSe layer onto a crystalties investigated lized layer of Se

162

p-n

Plastic

Heterojunctions fabricated by vacuum evaporating CdSe onto Se layers deposited on plastic substrates

Electromechanical 163, 164 properties reported and strain sensor heterodiodes fabricated

p-n

Se

Heterojunctions formed by evaporating Cd on Se rectifiers

Electrical properties reported

165

p-n

Se

CdSe formed in Se rectifiers by reaction between Cd and Se

Electrical properties reported

166

p-n

CdS

Te alloyed onto CdS single crystal in hydrogen atmosphere

/-Fand emission spectra reported

167

Method of preparation discussed

J-Kand electroluminescence characteristics reported

168

Te-CdS

α-νΐΜπ-νΐ) Cu20-ZnO

p-n

Cu 2 0-CdS

p-n

Cu 2 0

CdS films deposited on oxidized copper plate by vacuum-evaporation technique

J-Kand photoelectric properties presented

169

Cu2S-ZnS

p-n

ZnS

Cu2S films deposited on ZnS by chemical-displacement technique

Electrical properties reported, electroluminescence observed

170

p-n

ZnS

Cu2S deposited on ZnS by vacuum-evaporation technique

Electroluminescence studied

171, 172

p-n

Glass

Cu2S films deposited in vacuum on glass and heated to 200-300°C. ZnS was then evaporated<178)

Electrical and luminescent properties reported

174

p-n

CdS

Heterodiodes fabricated by vacuum evaporation of Cu2S on CdS

I-V and electroluminescence measurements reported

175

Cu2S-CdS

12·

171

SEMICONDUCTOR HETEROJ UNCTION S TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Cu2S-CdS (cont.)

Type Substrate

Comments

Refs.

p-n

CdS

Heteroj unctions prepared by immersing CdS in hot (80°C) saturated solution of CuCl in H 2 0 having a few drops of hydroxyl amine hydrochloride and HC1

176 I-V, C-Kand photovoltaic spectral response before and after heat treatment reported

p-n

CdS

Cu2S layers deposited on CdS by chemical-displacement technique

Growth parameters, electrical and photovoltaic properties investigated

177

p-n

CdS

Cu2_JS films deposited by vacuum evaporation onto CdS substrate

Thickness effect on photoelectric properties investigated

178

p-n

CdS

Heterojunction photoconverters prepared by chemical method

Spectral response studied

179

p-n

CdS

Cu2S deposited on CdS ceramic plate by chemical displacement technique

180 I-V, C-Kand spectral response reported

p-n

Mo

Heteroj unctions prepared by chemiplating Cu2S on CdS film vacuum evaporated onto Mo foil

Spectral response reported

181

p-n

CdS

Cu2S film deposited on CdS by vacuum-evaporation technique

Photovoltaic properties studied

182, 183

p-n

Plastic, metal or glass

Various methods of preparing heterojunction discussed

Performance of CdS thin film solar cells reviewed

184

CdS film evaporated onto the substrate and then Cu evaporated and annealed at 300°C for a short duration

Electrical and photovoltaic properties reported

185

Heterojunction prepared by chemiplating Cu2S on thin evaporated film of CdS on metal substrate

Spectral response as a function of heat treatment studied

186

187

p-n

Al

p-n

172

Method of preparation

p-n

CdS

Cu2S layer formed by immersing CdS in a saturated solution of CuCl at 90°C

Structural studies of the layers reported

p-n

CdS

Thick layer of Cu2S deposited on CdS by chemical displacement technique

Diffusion of Cu 188 from Cu2S into CdS investigated

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Cu2S-CdS (cont.)

Type Substrate

Method of preparation

Comments

Refs.

p-n

CdS

Heterojunctions prepared by electroplating Cu onto CdS and heat treating the structure

Photovoltaic properties measured

p-n

CdS

Heterojunctions prepared either by vacuum evaporation or by chemical displacement technique

Photovoltaic prop- 190 erties reported

p-n

Glass

Heterojunctions prepared by vacuum-evaporation technique

Photoelectrical properties of Cu-Cu 2 S-CdSCdO structure reported

189

191

p-n

Glass

Cu2S deposited on CdS by chemical displacement technique

Photovoltaic prop- 192 erties studied

p-n

Glass

Cu2S chemiplated on thin film of CdS deposited on glass plate

/ - F a n d spectral response reported

p-n

Kapton

p-n

Glass

193

Heterojunctions fabricated by Diffusion of Cu 194 chemiplating Cu2S on CdS into CdS invesfilms and by condensation of tigated and its CdS layers at 160°C on C u ^ S effect on spectral crystals response reported Light-emitting heterojunctions prepared by chemiplating Cu2S on CdS films deposited on glass substrate

Solid-state acousto- 195 electric light scanner fabricated

Heterojunctions fabricated by vacuum evaporation of Cu2S on CdTe films

Photoelectrical properties investigated

196

Cu2S-CdTe

p-n

Cu2Se-ZnSe

p-n

ZnSe

Heterojunctions prepared by chemiplating Cu2Se on ZnSe

Electrical proper170 ties reported and electroluminescence observed

Cu2Se-CdSe

p-n

CdSe

Cu2Se films deposited by thermal sublimation in vacuum on CdSe

Spectral response reported

197

p-n

CdSe

Cu2Se chemiplated on sintered CdSe substrate

Photoelectrical properties investigated

198

p-n

Mo

I-V, C-Kand Heterojunctions fabricated by photoelectrical evaporating Cu2Se on CdSe properties refilms, prepared by vacuum ported evaporation onto Mo substrates

199, 200

173

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction Cu2Te-CdTe

Type Substrate

Method of preparation

Comments

Refs.

p-n

CdTe, Mo or glass

Heteroj unctions prepared by chemiplating Cu2Te on CdTe single crystals or CdTe films deposited on Mo or glass substrates

Electrical and photovoltaic properties measured and solar cells fabricated

201, 202

p-n

CdTe

Cu2Te flash evaporated onto CdTe single crystal or CdTe films

Electrical and photoelectric properties reported

203

p-n

Mo or glass

Heteroj unctions fabricated by chemiplating Cu2Te on CdTe films vacuum sputtered onto Mo or glass substrates

Photoelectric prop- 204 erties reported

p-n

Mo

Cu2Te deposited on CdTe films by vacuum evaporation

Electrical and photovoltaic properties measured

205

p-n

CdS-Mo

Cu2_xTe deposited on CdTe film by flash evaporation technique (CdTe film deposited on CdS-Mo substrate by vapour-phase reaction)

(/>)Cu2_xTe(w)CdTe-(/z)CdS -Mo structure fabricated and effect of heat treatment on electrical properties studied

206

n-p

Glass

Ag2S layer chemically deposited Electrical and on top of a PbS layer chemically photoconductive deposited on glass substrate measurements reported

207

ZnO-CdS

CdS

ZnO films grown by sputtering on CdS

Structural properties of the films studied

208

ZnS-CdS

ZnS

CdS layer grown on ZnS by vapour-phase transport process in an open-tube system

Structural studies reported

209

ZnS

Heteroj unctions basically fabricated by self-sealing method(2io> e x c e pt ZnS placed at the top of the growth tube

Electron microprobe studies revealed graded nature

211

(ΐ-\Ί)-(ΐν-νΐ) Ag2S-PbS

(II-VIHII-VI)

"

174

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

CdS ZnS

Epitaxial layers of ZnS on CdS and CdS on ZnS grown by vapour-transport process using N 2 as transport gas (forming gas or argon also used)

Growth parame212 ters reported and growth mechanism discussed

CdS

Heteroj unctions prepared by vapour-phase transport method

ZnS-CdS graded heteroj unctions fabricated and luminescence studies reported

Glass

Coevaporation of CdS and ZnS from two different boats onto glass substrate

CdS-ZnS rectifiers 214 fabricated (rectification properties up to 500°C)

n-p

ZnSe

ZnTe epitaxially grown on ZnSe by vapour-deposition method in a sealed tube

Interface studies, electrical and electroluminescence properties reported

215, 216

n-p

ZnSe

ZnTe films epitaxially grown on ZnSe using a mixture of H 2 and HC1 gases as carrier gas

I-V, C-Kand temperature dependence of luminescence reported

217

n-p

ZnTe

Heteroj unctions prepared by vacuum evaporation of ZnSe on ZnTe

Photoelectrical and 218, 219 luminescent properties measured

NaCl

Single crystal films of ZnSe and CdSe grown to form heterojunction by sputtering onto NaCl substrate

Structural properties and growth parameters discussed

220



Glass

Vacuum deposition of a graded CdSe-ZnSe film between two Au electrodes

/ - V characteristics measured

221

ZnSe-CdTe

n-p

CdTe

Heteroj unctions fabricated by vacuum evaporation of ZnSe on CdTe

Photoelectrical and 218 luminescent properties measured

ZnTe-CdS

p-n

CdS

Epitaxial layers of ZnTe grown onto CdS substrate by opentube vapour-transport method

Structural proper- 222 ties of the grown films studied

p-n

ZnTe

Heteroj unctions prepared by vapour deposition of CdS on ZnTe

223 /-Kand growth features reported

ZnS-CdS (cont.)

ZnSe-ZnTe

ZnSe-CdSe

213

175

SEMICONDUCTOR HETEROJUNCTION S TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

ZnTe-CdS (cont.)

p-n

CdS ZnTe

Electrical properHeteroj unctions prepared by ties reported vacuum evaporation of ZnTe on CdS or CdS on ZnTe in H 2 atmosphere

ZnTe-CdSe

p-n

ZnTe

Epitaxial films of CdSe grown by open-tube vapour-transport method or by vacuum evaporation technique

I-V, photovoltaic properties reported and electroluminescent diodes fabricated

225, 226

p-n

CdSe ZnTe

Epitaxial films of ZnTe on CdSe single crystals or CdSe on ZnTe single crystals grown by vapour-phase reaction using argon as carrier gas

Electrical and photoelectric properties reported

227

p-n

ZnTe

Heteroj unctions prepared by vacuum evaporation of CdSe on ZnTe or by transport of CdSe in Ar atmosphere

Photoelectrical and 218,228 luminescent properties measured

n-n

CdS CdSe

Heteroj unctions fabricated by vacuum evaporation of CdSe on CdS single-crystal wafers or CdS on CdSe singlecrystal wafers

Photovoltaic properties measured

229

n-n

CdSe or glass

Thin-film heterostructure pre- . pared by flash evaporation of CdS and CdSe on glass substrate or by vacuum evaporation of CdS on CdSe singlecrystal substrate

Graded CdS-CdSe heterojunctions also discussed

230, 231

n-n

Mica

Multilayer single-crystal systems (CdS^-CCdSe)^ on cleaved mica surface fabricated by sublimation

Photoelectric properties of films reported

232

CdS

Epitaxial films of CdTe deposited on CdS by HC1 vapourtransport technique

Growth parameters and structural properties of grown films investigated

233, 234

Glass

Thin film heterostructure prepared by successive deposition of Sn0 2 , CdS and CdTe on glass substrate in vacuum

Photodiodes fabricated and electrical and photoelectrical properties reported

235, 236

CdS-CdSe

CdS-CdTe

n-p

176

224

SURVEY OF EXPERIMENTAL W O R K TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS

Heterojunction CdS-CdTe (cont.)

Type Substrate



Glass

n-p

(cont.)

Method of preparation

Comments

Refs.

Au-CdS-CdTe-Te heterodiodes fabricated by vacuum evaporation technique

I-V, C-Vand photoresponse reported

237, 238

Single-crystal CdS-CdTe heterojunctions prepared by the method of double recrystallization

Photoelectric prop- 239 erties reported

CdS-HgS

CdS

Epitaxial layer of HgS grown on CdS by vapour-transport process using N 2 as transporting gas

Growth parameters reported

212

CdTe-HgTe

CdTe

HgTe grown on CdTe by a method based on evaporation from source and diffusion onto substrate (source and substrate closely spaced at same temperature)

Growth parameters and photoelectric properties studied

240

(Il-VI)-(ni-V) ZnS-GaP



GaP

Epitaxial layer of ZnS grown on GaP by vapour-transport reaction in a closed system

Growth parameters studied

241

ZnS-GaAs

n-p

GaAs

ZnS deposited on GaAs by the method discussed in ref. 242

Spectral response and luminescent properties reported

243

ZnS

InSb films grown on ZnS by vacuum evaporation technique

Optical properties 244 of films reported

n-p

GaAs

Epitaxial layer of ZnSe grown on GaAs by close-spaced HC1 transport process

Growth studies and electrical properties reported; n-p-n transistor also fabricated

40, 45

n-p n-n

GaAs

Heterojunctions prepared by growing ZnSe on GaAs using chemical transport process

Growth parameters and electrical properties reported

245

n-p

GaAs

Epitaxial films of ZnSe grown on GaAs by open-tube HBr vapour-transport process

246, 247 Growth parameters, I-V and luminescent properties reported

GaAs

ZnSe grown on semi-insulating GaAs by vapour-transport process using H 2 and HC1 as transporting gases

Growth parameters studied

ZnS-InSb ZnSe-GaAs



248

177

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction ZnTe-GaSb

ZnTe-InAs

CdS-GaP

Type Substrate

CdTe-GaAs

ZnTe

Heterojunctions prepared by interface-alloy technique

/ - F a n d photo249 response reported

p-p

ZnTe

GaSb alloyed onto ZnTe in H 2 atmosphere

Existence of graded band-gap region reported

250

p-n

ZnTe

Heteroj unctions prepared by interface-alloy technique

p-i-n structure observed

251

p-n

ZnTe

Heteroj unctions prepared by interface-alloy technique

I-V, C-Fandluminescent properties measured p-i-n structure observed

251

p-n

InAs

ZnTe grown on InAs by vapourtransport process in a closed system

Structural properties reported

252

n-n

GaP

CdS films grown on GaP by open-tube vapour-transport technique

Structural properties investigated

253

GaP

CdS films deposited on GaP by HC1 vapour-transport technique

Growth parameters and structural properties reported

233, 234

GaAs

CdS epitaxial films grown on GaAs by an H2-HC1 vapour phase chemical reaction technique or H 2 chemical reaction technique

Growth parameters and structural properties reported

234

CdS

InSb films deposited on CdS by three-temperature process

Optical properties of films studied

254

GaAs

Epitaxial layers of CdTe grown on GaAs by vapour-transport reaction in a sealed tube

Growth parameters and I-V reported

255

GaAs

Epitaxial films of CdTe grown on GaAs by vapour-transport technique using H 2 as carrier gas

Structural properties investigated

256

CdTe

Heteroj unctions prepared by interface-alloy technique

Electrical and photoelectrical properties studied

257

GaS platelets covered with ZnS grown by crystallization method from metallic melts

Structural properties studied

258

— p-n

CdTe-InSb

p-n

(II-VI)-(IH-VI) ZnS-GaS

n-p

178

Refs.

P-P p-n

CdS-GaAs

CdS-InSb

Comments

Method of preparation

1

SURVEY OF EXPERIMENTAL WORK

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.


SiC

Heteroj unctions prepared by vari- I-V characteristics ous methods reported

259

n-p

SiC

CdS layer grown of singlecrystal SiC (method not given)

Electrical, photoelectrical and luminescent properties studied

260

CdS-PbS

n-p

CdS

Epitaxial films of PbS deposited onto CdS from a water solution of reacting chemical at room temperature

Electrical and photovoltaic properties measured

261

CdSe-PbS

n-p

CdSe

Films of PbS deposited on CdS by chemical deposition technique

I-V, C-Fand 262 spectral response reported

CdTe

Crystalline growth of GeTe on CdTe by evaporation-diffusion under isothermal conditions

Growth parameters reported

240

CdS-SiC

(π-νΐΜΐν-νΐ)

CdTe-GeTe

HgTe-GeTe



GeTe

Crystalline growth of HgTe on GeTe by evaporation-diffusion under isothermal conditions

Growth parameters reported

240

HgTe-PbTe



PbTe

Crystalline growth of HgTe on PbTe by evaporation-diffusion under isothermal conditions

Growth parameters reported

240

CdS

As2Se3 films evaporated onto CdS single-crystal substrates

Electrical and photoelectrical properties studied

263

GaAs

AIP films grown on GaAs by using an open-tube vapourtransport technique

Structural properties and growth parameters reported

128

GaAs

Epitaxial layer of AlAs grown on GaAs by an open-tube vapour-transport technique in which Al is transported in presence of As vapour in a stream of H2

Physical properties of grown layer reported

130

(II-VI)-(V-VI) CdS-As2Se3

n-p

(m-v)-(iii-v) AlP-GaAs

AlAs-GaAs

n-n

179

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.



GaAs

Heterojunctions formed by alloying Al on GaAs in H 2 atmosphere

Microscopic observations reported

264

n-p n-n

GaAs

Heterojunction prepared by alloying Al on GaAs

Electrical and photoelectrical properties measured

265

GaAs

AlAs epitaxially grown on GaAs by an open-tube vapourtransport technique using aluminium chloride and arsine

Structural and electrical properties of grown layers investigated

266

AlSb-GaAs

GaAs

AlSb epitaxial films deposited on GaAs by flash evaporation technique

Growth parameters reported

73

GaN-GaAs

GaAs

Single-crystal GaN grown on GaAs by heating the intermediate oxide phase in ammonia or ammonia/nitrogen mixture

Structural perfections of GaN layers studied

267

p-n n-p n-n

GaP

Epitaxial layers of GaAs grown on GaP in an open-tube vapour-transport system using HC1 as transporting agent

I-V, C-Kand photoresponse studied

268

n-n

GaP

GaAs grown on single-crystal platelets of GaP using an open-tube Ga-AsCl 3 vapourtransport system

7- V characteristics at various temperatures measured

269

n-p

GaAs

Epitaxial growth of GaP on GaAs by vapour-phase technique(270) and by solution growth technique(271)

7-Kand C-V measured

80

p-n

GaAs

GaP epitaxially grown on GaAs by closed-tube vapour-transport technique

Growth parameters, electrical and electrophotoluminescence properties investigated

255, 272-4

p-n

GaAs

GaP grown on GaAs by closedtube vapour-transport technique using cadmium chloride as transporting and doping agent

Photoelectric prop- 275 erties measured Heterophotocell efficiency of -8%

n-p

GaAs

Epitaxial layer of GaP grown by close-spaced epitaxial process

Photovoltaic spectral response measured

AlAs-GaAs (cont.)

GaP-GaAs

180

276

SURVEY OF EXPERIMENTAL WORK TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS

Heterpjunction

Type Substrate

GaP-GaAs (cont.)

n-n

n-n n-p

— p-n

Method of preparation

1

(cont.)

Comments

Refs.

GaAs

Epitaxial film of GaP grown on GaAs by vapour phase in a sealed tube containing HCl

Growth parameters 93 as a function of temperature and HCl pressure discussed

GaAs

Epitaxial deposition of GaP on GaAs by chloride-vapourtransport system having an arrangement to cool substrate

Used for bulk growth of GaP

GaAs

Vapour growth of GaP on GaAs by a PC13 chemical transport method

278 Electrical properties of GaP films reported

GaAs

Epitaxial films of GaP grown on GaAs by open-tube PC13 vapour-transport method

GaAs

S-doped GaP crystals grown on GaAs by PC13 vapour-transport method

Electrical and optical properties of the films measured

279

GaAs

Epitaxial platelets of high resistivity GaP grown by vapourtransport method using HCl and phosphine

Growth parameters studied

280

GaAs

GaP grown on GaAs substrate using phosphine and HC1(281)

Growth parameters reported

282

GaAs

GaP layers grown on GaAs by vapour-transport method (Ga-PCl 3 -H 2 )

277

79

283

" 73

GaAs

Epitaxial films of GaP grown on GaAs by flash-evaporation technique

Growth parameters studied

GaAs

Zn-doped GaP grown on GaAs by water-vapour transport method

284 Growth rates, electrical properties and photolumines- j cence studied

n-n

GaAs

Epitaxial GaP grown on GaAs by open-tube Ga-PCl 3 -H 2 system

285 Electrical properties of the grown layers studied

n-n

GaAs

Epitaxial layers of GaP grown on GaAs by open-tube wet hydrogen process

Electrical properties of grown layers studied

286

181

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Method of preparation

Comments

Refs.

GaP-GaAs (cont.)

n-n p-n

GaAs

GaP epitaxially grown on GaP by close-spaced water transport process(287)

Growth conditions discussed

GaAs-GaSb

p-n n-p n-n p-p

GaAs

Heterojunctions prepared by interface-alloy technique

Growth parame98, 289 ters, electrical and opto-electrical properties studied



GaAs

GaSb grown on GaAs by flashevaporation technique

Growth parameters studied

73

GaAs

Epitaxial growth of GaSb on GaAs using Ga-SbH 3 -HCl in an open-tube system

Crystalline nature of grown layer studied

290

GaAs

Heterojunctions fabricated by closed-tube vapour-transport technique

Electrical properties reported (I-V, C-V)

291

GaAs

InP grown on GaAs by using PCI 3 as transporting agent in an open-tube system

Growth parameters studied

292

GaAs

InP films grown on GaAs by the sandwich method of vapour deposition in an H 2 0 vapour atmosphere using indium oxide and phosphorus

Structural studies reported

293

GaAs

InP films deposited on GaAs by flash-evaporation technique

Growth parameters studied

73

GaAs

InP grown on GaAs by opentube vapour-transport system using PH 8 , HC1, In and H 2

Growth parameters reported

294

GaAs

InAs epitaxially grown on GaAs by closed-tube vapour-transport technique

Growth parameters studied

108

GaAs

InAs grown on GaAs by open295 Electrical propertube halide transport technique ties of epitaxial layers investigated

GaAs

Epitaxial layers of InAs grown on GaAs by halogen-vapour transport process using opentube and closed-tube systems

Electroluminescent diodes fabricated GaAs-InAs mixed crystals also grown on GaAs

GaAs

Epitaxial films of InAs grown on GaAs by open-tube vapour-transport technique

297 Electrical and galvanomagnetic properties of the films studied

" GaAs-InP

n-n n-p



GaAs-InAs

n-n p-n

n-p

182

288

296

SURVEY OF EXPERIMENTAL WORK

TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Heterojunction

Type Substrate

Structural and electrical properties of the films investigated

298

GaAs

InAs sputtered onto GaAs substrates

Electrical properties of the films measured

124

GaAs

Epitaxial films of InAs obtained by vacuum evaporation onto GaAs

Growth parameters studied

299



GaAs

InAs films deposited on GaAs by flash-evaporation technique

Growth parameters reported

73



GaAs

Sandwich method used to grow InAs films on GaAs

Structural properties reported

300

n-n p-p

GaAs

Heterojunctions fabricated by interface-alloy technique

I-V, C-Fand photoresponse measured

301,302

~

GaAs

Epitaxial films of InSb grown on GaAs by flash-evaporation technique

Growth parameters reported

73

GaAs

InSb films prepared by vacuumevaporation technique

Electrical properties of films measured

299

n-p

InAs

Heterojunctions prepared by interface-alloy technique

Electrical and 289, 303 electro-optical properties of the heterojunctions studied



InAs

Crystalline growth of GaSb on InAs by evaporation-diffusion under isothermal conditions

Growth parameters reported

240

GaSb

Heterojunctions prepared by crystallization from melt of InSb on GaSb

Electrical properties of the heterojunctions reported

304

InAs

Epitaxial layer of InP grown on InAs by open-tube vapourtransport technique using PH3 and H 2

Growth parameters reported

305

GaAs

In 2 0 3 films deposited on GaAs by chemical-growth process

I-V characteristics reported

140

" GaSb-InAs

GaSb-InSb

n-p

InP-InAs

(m-v)-(in-vi) GaAs-In2Os

Refs.

Epitaxial films of InAs deposited on GaAs by vacuum evaporation using the threetemperature method

"

GaAs-InSb

Comments

GaAs

GaAs-InAs (cont.)

/

Method of preparation

n-n

183

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)

Type Substrate

Refs.

Method of preparation

Comments

SiC

Epitaxial films of BP deposited on SiC by vapour-phase reaction technique

Rectifying properties observed

306

SiC

BP grown on SiC by thermal decomposition of diboranephosphine mixtures in H 2 atmosphere and by thermal reduction of BBr 3 -PCl 3 in H 2 atmosphere

Electrical properties of grown layers studied

307

AIN-SiC

SiC

Epitaxial growth of A1N on SiC by ammonolysis of aluminium trichloride in an open-tube system

Growth parameters reported

308

GaN-SiC

SiC

GaN thin films deposited on /7-type SiC by reacting GaCl 3 and NH 3 in an open-tube system using N 2 as carrier gas

Structural properties of the films measured

267

Heterojunction

(m-v)-(iv-iv) BP-SiC

p-n

(m-V)-(IV-VI) GaAs-GeTe

n-p

GaAs

Heteroj unctions prepared by vacuum evaporation of GeTe on GaAs

I-V characteristics of the tunnel heteroj unctions at low temperatures reported

309

GaAs-SnTe

n-p

GaAs

Heteroj unctions prepared by vacuum evaporation of SnTe on GaAs

/ - V characteristics of the tunnel heteroj unctions at low temperatures reported

309

GaAs-PbS

n-p

GaAs

Epitaxial films of PbS deposited on GaAs by water solution of reacting chemical at room temperature

Electrical properties and photovoltaic spectral response measured

310

GaSb-PbS

n-p p-p

GaSb

Epitaxial films of PbS deposited on GaSb by water solution of reacting chemicals at room temperature

311 Electrical properties and photovoltaic spectral response reported

PbS-PbSe

NaCl

PbS film vacuum evaporated onto NaCl followed by PbSe film evaporation

Misfit dislocations studied

312

GeTe-PbTe

PbTe

Crystalline growth of GeTe on PbTe by evaporation-diffusion under isothermal conditions

Growth parameters reported

240


"

184

SURVEY OF EXPERIMENTAL WORK

TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS

Substrate

Method of preparation

Comments

Refs.

Ge-Ge^ii-*

Ge

Electrical properties of (p)Ge-(n)GexSh-x heterodiodes reported

117

Si-GeJtSi1_x

Si

Epitaxial layers of Ge^Si^^ grown on Ge by simultaneous decomposition of the hydrides of Ge and Si Heterojunctions prepared by vapour transport-interface alloying process using GeCl 4 -SiHCl 3 -H 2 system Ge z Si!_ x epitaxial layers grown on Si by the method given in ref. 33 Heterojunctions prepared by iodide-vapour transport-interface alloying process Heterojunctions prepared by halide-vapour transportinterface alloying process Heterojunctions prepared by successive deposition of single-crystal thin films of Ge and (Galn)As onto CaF 2 substrates Ga(AsP) layers grown on Ge by open-tube vapour-transport technique

Structural and electrical properties of the heterojunctions reported

33

Surface properties of the grown layers studied

313

/-Fand

31

Heterojunction

Si Si Si Ge-GaJnx.^As

CaF 2

Ge-GaASaPi-s

Ge

Ga(AsP) GaP-Al.Gai.^P

GaP GaP

GaP-GaJn^P

GaP GaP

GaP

GaP

13

Ge layers grown on Ga(AsP) by open-tube iodide disproportionation process Heterojunctions prepared by liquid-phase epitaxy Heterojunctions prepared by alloying Al on GaP Single crystal layers of (Galn)P grown on GaP by liquid phase epitaxy (Galn)P epitaxial layers grown on GaP by open-tube vapour transport technique using Ga-In-HCl-PH 3 -H 2 system (Galn)P grown on GaP by open-tube vapour-transport technique using Ga-In-PCl 3 -H 2 system (Galn)P layers grown on GaP by solution-growth technique

C-Vreported

Interface structure studied

11, 12

Misfit dislocations at the interface studied

314

Structural, electrical and photoluminescence properties of the grown layers reported Electrical properties measured

315

Growth conditions reported I- V characteristics and electroluminescence properties reported Lattice constant as a function of x studied

317

316

318 319 294

Growth conditions discussed

320

Structural and optical properties of the grown layers reported

321

185

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)

Heterojunction

Substrate

GaP-GaAs x P!_ x 1 GaP GaP GaP

Method of preparation

Comments

Refs.

Ga(AsP) grown on GaP by liquid-phase epitaxy

Growth parameters stud- j ied

322

Ga(AsP) grown on GaP by molecular beam deposition

Growth parameters studied

323

Electrical properties of the grown layers measured

324

1 Ga(AsP) grown on GaP by closed-tube iodine-vapour transport technique

GaP-InAsJP!_ x

GaP

In(AsP) grown on GaP by open- Growth parameters and electrical properties of tube vapour-transport techthe grown alloys renique using In-HCl-AsH 3 ported PH 3 -H 2 system

GaAs-AlÄGai_aAs

GaAs

Heteroj unctions prepared by liquid-phase epitaxy using sliding mechanism

GaAs

Four layer heterostructures grown onto «-type GaAs substrates using a multilayer solution-growth tipping apparatus

GaAs

Multilayer heterostructures con- Injection laser diodes hav- 338-43 sisting of GaAs and AlAsing different heteroGaAs solid solutions prepared structures fabricated by liquid-phase epitaxy for cw operation at room temperature

GaAs

Heterostructures prepared by liquid-phase epitaxy(344)

Injection heterolaser operating at 163°C reported

345

GaAs

Heteroj unctions prepared by growing (AlGa)As on GaAs by liquid-phase epitaxy

Close-confinement (p) Al^Gax _x As-(p)GaAs -(«)GaAs lasers fabricated

346

GaAs

Heterodiodes fabricated by Red and infrared light347 sequential growth of n- and emitting laser diodes /j-type (AlGa)As layers onto having close-confineGaAs substrate by liquid ment structure fabriphase epitaxy cated Multilayer heterostructures con- Injection lasers with large 348, 349 sisting of GaAs and (AlGa)As optical cavity fabricated prepared by liquid-phase epiand various advantages taxy of such structures discussed Heterostructures fabricated by (AlGa)As injection lasers 350, 351 sequential growth of (AlGa)As fabricated layers with different conductivities and compositions onto GaAs substrate by liquid phase epitaxy |

GaAs

GaAs

186

325

0?) AlsGax _ x As-(»GaAs(«)GaAs heterostructure injection lasers 1 fabricated

326-9

Double heterojunction injection lasers fabricated

330-7

SURVEY OF EXPERIMENTAL W O R K TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)

Comments

Heterojunction

Substrate

Method of preparation

GaAs-AlxGai _xAs (cont.)

GaAs

(AlGa)As layers grown on GaAs substrate by isothermal solutions-mixing method

Double heterojunction injection lasers fabricated

352

GaAs

(AlGa)As layers grown on GaAs by liquid-phase epitaxy

Q?) Ala-Gax _ xAs-(/?)GaAs(w)GaAs laser diodes fabricated and gain and loss processes discussed

353

GaAs

Heterojunction prepared by liquid-phase epitaxial process similar to ref. 326

Single heterojunction laser diodes fabricated and gain and loss factors studied

354

GaAs

Spontaneous visible radiation sources based on AlAs-GaAs solid solutions prepared by liquid-phase epitaxy

(«JGaAs-OOAl-cGax _ aAs(/?)Al2Ga!_zAs and («)GaA-(«)AlxGa! _*As -(/OAlyGa^yAs(p)AlzGa!_2As heterostructures prepared and I-V and electroluminescence properties measured

355

GaAs

Epitaxial layers of/?-type (AlGa)As grown on «-type GaAs by liquid-phase epi-

Photoelectric properties measured and coordinate-sensitive photocell fabricated

356, 357

Multilayer heterodiodes fabricated by liquid-phase epi-

Electrical, transient and 358, 359 electroluminescence properties of (p)GaAs(Si)GaAs-(w)AlxGa1_xAs and (p)AlxGa!_ÄAs(SOGaAs-MAlsGa^sAs S-diodes studied

GaAs

(p)AlitGai_xAs-(w)GaAs heteroj unctions prepared by liquidphase epitaxy

I-V, C-Fand injection luminescence studied

360

GaAs

p-n-p-n structure based on GaAs and AlAs-GaAs solid solutions prepared by liquidphase epitaxy

Fast switching structures fabricated and I-V characteristics reported

361

GaAs

Epitaxial growth of (AlGa)As films from molten solutions of As in Ga with admixture of Al

Electroluminescence under avalanche breakdown conditions

362

GaAs

Epitaxial films of /?-type (AlGa)As grown on w-type GaAs substrates by liquidphase epitaxy

Solar-energy photoconverters fabricated

363

taxy(344)

GaAs

taxy(344)

13*

Refs.

187

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)

Method of preparation

Comments

Refs.

Heterostructures fabricated by liquid-phase epitaxy

Electrical properties of the high-voltage p-n and p-i-n heterodiodes reported

364, 365

GaAs

(AlGa)As grown on GaAs by halide vapour disproportionation reaction in a closedtube

Optical and electrical properties measured

366

GaAs

Heavily doped (AlGa)As alloys grown on GaAs by liquidphase epitaxy

Electrical properties and influence of the growth conditions on the emission spectra n-p and p-n heterodiodes investigated

367

GaAs

(AlGa)As epitaxial layers grown on GaAs by liquid-phase epitaxy

Visible light emitting diodes fabricated

368

GaAs

Multilayer structures with hetero- Spontaneous light-emisjunctions fabricated by liquidsion sources fabricated phase epitaxy

369

GaAs

iMype GaAs grown on Al^Gai-a· Optoelectronic cold cathode [(/?)GaAsAs electroluminescent (p-n) (»Al^Gai-sAs-Oi) diode. The multilayer strucAlxGax _a.As-(«)GaAs] tures prepared by liquidmade and overall efphase epitaxy ficiency measured

370, 371

GaAs-GaJn^P

GaAs

(GaTn)P grown on GaAs by open-tube vapour-transport technique using Ga-In-PCl 3 -H 2 system

Growth conditions discussed

GaAs-Ga-Jiix-sAs

GaAs

(Galn)As layers grown on GaAs by open-tube vapour-transport technique

Optoelectronic properties of p-n and n-p heterojunctions measured

372, 373

GaAs

Heteroj unctions prepared by recrystallization of (Galn)As layers from Bi/InAs/Mn alloy onto GaAs substrates(374)

Electrical and optical properties of the heterojunctions measured

375

GaAs

QOGaAs-OoGa-Jni-aAs hetero- 1 Photosensitivity spectra junctions prepared by liquidand electroluminescence phase epitaxy(376) of heterodiodes investigated

377

GaAs

Heteroj unctions prepared by liquid-phase epitaxy

317

Heterojunction

Substrate

GaAs-AlxGai_xAs (cont.)

GaAs

188

Growth conditions reported

320

SURVEY OF EXPERIMENTAL W O R K

TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)

Heterojunction

Substrate

Method of preparation

Comments

Refs.

GaAs-GaJni _sAs (cont.)

GaAs

(Galn)As alloys deposited on GaAs by open-tube vapourtransport technique using Ga-In-HCl-AsH 3 -H 2 system

Use of (Galn)As alloys for infrared photocathodes discussed

294

GaAs

(Galn)As grown on GaAs using open-tube vapour-transport technique

Physical and electrical properties of the grown layers reported

378

GaAs

(Galn)As grown on GaAs by liquid-phase epitaxy

Growth conditions discussed

379

GaAs

Ga(AsP) grown on GaAs by pyrolysis of trimethyl gallium, AsH3, PH3 in hydrogen atmosphere

Growth parameters reported

380

GaAs

Ga(AsP) grown on GaAs by open-tube vapour-transport technique

(w)GaAs-(/?)GaAs(p)GaAsxP1_x heterostructure injection lasers fabricated

381

GaAs

Ga(AsP) grown on GaAs by molecular beam deposition

Growth parameters studied

323

GaAs

Heterojunctions fabricated by open-tube vapour-transport technique

Optoelectronic properties of 0)GaAs-(7i)GaAsÄPi_s studied

372

GaAs

Ga(AsP) grown on GaAs by closed-tube iodine-vapour transport technique

Electrical properties of the grown layers measured

324

GaAs

(«)GaAszPi _ a.-(«)GaAs heterojunctions prepared by opentube vapour-transport technique

Photoresponse studied

382

GaAs

Ga(AsP) grown on GaAs by liquid-phase epitaxy

Growth conditions reported

317

GaAs

Ga(AsP) epitaxial layers grown on GaAs by open-tube vapour-transport technique*281*

Dislocation morphology and stress at the interface studied

GaAs

Epitaxial films of Ga(AsP) grown on GaAs by open-tube vapour-transport technique

Diffusion and drift of zinc ions in heterojunctions investigated

385

GaAs

Ga(AsP) layers deposited on GaAs by vapour-phase epitaxy

(/OGaAs-OOGaAsJPi.* photodiodes prepared and spectral response measured

386

Performance of such a diode as photomixer studied

387

GaAs-GaASsPi-s

383, 384

I

189

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)

Heteroj unction

Substrate

Method of preparation

Comments

Refs.

GaAs-GaSbxAsi_x

GaAs

Ga(SbAs) epitaxial films grown on GaAs by liquid-phase epitaxy

Electrical and optical properties of the films measured

388

GaAs

Ga(SbAs) alloys grown on GaAs by open-tube vapourtransport technique using Ga-HCl-AsH 3 -SbH 3 -H 2 system

Electrical properties of the grown layers reported

GaAs

Heteroj untions prepared by recrystallization of Ga(SbAs) alloys from Bi/GaSb alloy onto GaAs substrates

Electrical properties of the grown layers studied

374

GaAs

Ga(SbAs) grown on GaAs by liquid-phase epitaxy

Use of Ga(SbAs) as a long-wavelength threshold photoemitter discussed

389

GaAs

In(AsP) grown on GaAs by open-tube vapour-transport technique using In-HCl-AsH 3 -PH 3 -H 2 system

Growth parameters and electrical properties of the grown alloys reported

325, 390

GaAs

In(AsP) grown on GaAs by open-tube vapour-transport technique using In-HCl-AsH 3 -PH 3 -H 2 system

Electrical properties of the grown alloys studied

305

GaAs-InSbxAs! _ x

GaAs

In(SbAs) films grown on GaAs by flash evaporation of mixed InAs and InSb powders

Electrical and optical properties of the grown films investigated

391

GaSb-Al^Gai-sSb

GaSb

(AlGa)Sb grown on GaSb by liquid-phase epitaxy

Growth conditions reported

317

GaSb-GaJnx.^Sb

GaSb

(Galn)Sb-GaSb heterocrystals obtained by means of pulling, displacement of melting zone and alloying

Structural properties studied

392

InP

Single-crystal layers of (Galn)P grown on InP by liquid-phase epitaxy

Lattice constant as a function of x studied

319

InP

(Galn)P grown on InP by opentube vapour-transport technique using Ga-In-PCl3-H2 system

Growth conditions studied

320

InP

(Galn)P epitaxially grown on InP by open-tube vapourtransport technique using Ga-In-HCl-PH 3 -H 2 system

GaAs-InASaPx-s

InP-GaJnx.^

190

290, 294

294

SURVEY OF EXPERIMENTAL WORK

TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)

Heterojunction

Substrate

Method of preparation

Comments

Refs.

InP

In(AsP) epitaxially grown on InP by open-tube vapourtransport technique using In-HCl-AsH 3 -PH 3 -H 2 system

Electrical properties of the grown alloys discussed

InP

In(AsP) grown on InP by liquid-phase epitaxy

Growth and characteriza- 393, 394 tion of In(AsP) reported

InAs-GaJnx.^As

InAs

(Galn)As alloys grown on InAs by open-tube vapour-transport technique using Ga-In-HCl-AsH 3 -H 2 system

Electrical properties of the grown alloys mentioned

294

InAs-GaJnx.aP

InAs

(Galn)P grown on InAs by open-tube vapour-transport technique using Ga-In-PCl 3 H 2 system

Growth conditions discussed

320

InAs-InASaPx-x

InAs

In(AsP) deposited on InAs by open-tube vapour-transport technique using In-HClAsH 3 -PH 3 -H 2 system

Structural and electrical properties of the grown alloys investigated

305

InSb-GaJnLsSb

InSb

(Galn)Sb grown on InSb by temperature-gradient zone melting technique

Growth parameters and structural properties of the grown solid solutions studies

395

Ge-CdaHg!_xTe

Ge

Films of (CdHg)Te deposited on Optical properties of the Ge by cathodic sputtering films reported and subsequent annealing

396

Photoelectrical and luminescent properties of the heteroj unctions studied

218

InP-InAsJPi_x

ZnSe-ZnsCdi.sTe ZnxCdx_x Heterojunctions prepared by vacuum evaporation of ZnSe Te onto Zn0.6Cd0.4Te substrates ZnSe-ZnSe^Te!..,

ZnTe-CdS^ei.»

294

ZnSe

Zn(SeTe) films deposited on ZnSe by flash evaporation technique

(/i)ZnSe-(/)ZnSeo.4Teo.6(/?)ZnTe heterostructure fabricated and electroluminescent properties studied

397

ZnSe

Zn(SeTe) epitaxially grown on ZnSe by vapour-deposition method in a sealed tube

Growth parameters reported

398

ZnTe

Cd(SSe) grown on ZnTe in an open-tube system with H 2 as the transporting agent

0?)ZnTe-(n)CdSxSe1 _X heterodiodes fabricated and photovoltaic and luminescent properties measured

399,400

191

SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING

ABRUPT-HETEROJUNCTIONS

USING M I X E D CRYSTALS AND TERNARY COMPOUNDS AS O N E OR BOTH CONSTITUENTS

Heterojunction

Substrate

Method of preparation

(cont.)

Comments

Refs.

Ge-ZnGeP 2

ZnGeP2

Ge deposited on ZnGeP2 by open-tube vapour-transport technique using iodine as transporting agent

Structural properties studied

401,406 407

Ge-ZnSiP2

ZnSiP2

Ge deposited on ZnSiP2 by open-tube vapour-transport technique using iodine as transporting agent

(/?)Ge-(«)ZnSiP2 heterodiodes fabricated and / - V measured

401,406 407

Ge-ZnSiAs2

ZnSiAs2

Ge deposited by iodine vapour transport



406, 407

Ge-CdSiP2

CdSiP2

Deposition from tin solution



408

Ge-CdSnP2

CdSnP2

Deposition from tin solution



408

Si-ZnGeP2

ZnGeP 2

Si deposited on ZnGeP 2 by hydrogen reduction of SiHCl3

Growth parameters reported

401

Si-ZnSiP2

ZnSiP2

Si deposited on ZnSiP2 by hydrogen reduction of SiHCl3

401, 402

Si

By temperature gradient zone melting

(>i)Si-00ZnSiP2 heterodiodes fabricated and electrical properties measured n-n heterojunction fabricated

CdSnAs2 deposited on GaAs by liquid-phase epitaxy

Growth parameters studied

401



408

GaAs-CdSnAs2

GaAs

GaP-ZnSiP2

GaP

From tin solution

Cu2S-CdSnP2

CdSnP2

Electrical and photoelecCu2S deposited on CdSnP2 by vacuum-evaporation technique trical properties measured

CdS-CuGaS2

CuGaS2

By molecular beam

(n) CdS-O?) CuGaS2 for LEDs grown

409

403-5

410

References 1. L. Y. W E I and J. SHEWCHUN, Proc. IEEE 51, 946 (1963). 2. J. SHEWCHUN and L. Y. W E I , / . Electrochem. Soc. I l l , 1145 (1964). 3. J. SHEWCHUN, Phys. Rev. 141, 775 (1966). 4. W. G. OLDHAM, A. R. RIBEN, D . L. FEUCHT and A. G. MILNES, / . Electrochem.

5. W. G. OLDHAM and A. G. MILNES, Solid State Electron. 9, 174 (1966).

6. A. R. RIBEN, D . L. FEUCHT and W. G. OLDHAM, / . Electrochem.

Soc. 110, 53C (1963).

Soc. 113, 245 (1966).

7. J. P. DONNELLY and A. G. MILNES, / . Electrochem. Soc. 113, 297 (1966). 8. J. P. DONNELLY and A. G. MILNES, Int. J. Electron. 20, 295 (1966).

9. J. P. DONNELLY and A. G. MILNES, IEEE Trans. Electron Devices ED-14, 63 (1967).

192

SURVEY OF EXPERIMENTAL W O R K

10. 11. 12. 13. 14. 15. 16.

W. G. OLDHAM and A. G. MILNES, Solid State Electron. 7, 153 (1964). J. BROWNSON, / . Appl. Phys. 35, 1356 (1964). J. BROWNSON, Trans. Metall. Soc. AIME 232,, 450 (1965). M. J. HAMPSHIRE and G. T. WRIGHT, Brit. J. Appl. Phys. 15, 1131 (1964). S. YAWATA and R. L. ANDERSON, Phys. Stat. Sol. 12, 297 (1965). A. L. REENSTRA and H . W. THOMPSON, Jr., / . Appl. Phys. 38, 3798 (1967). E. P. EERNISSE and H. W. THOMPSON, Jr., / . Appl. Phys. 36, 2652 (1965).

17. G. W. NEUDECK, H . W. THOMPSON, Jr. and R. J. SCHWARTZ, / . Appl. Phys. 40, 4108 (1969).

18. 19. 20. 21.

W. T. LINDLEY, Dissertation, Purdue University, Dissertation Abst. 27, 2360 (1967). H. W. THOMPSON, Jr. and A. L. REENSTRA, / . Appl. Phys. 38, 4739 (1968). E. JANIK, Przeglad Elektron {Poland) 6, 65 (1965). M. GRYNGLAS and E. JANIK, Electron. Tech. 1, 85 (1968).

22. Y. KANDA, T. TOKAI and H. KOZUKA, Jap. J. Appl. Phys. 4 , 701 (1965). 23. M. NUNOSHITA, A. ISHIZU and J. YAMAGUCHI, Jap. J. Appl. Phys. 8, 1133 (1969). 24. T. KIMURA, M. NUNOSHITA and J. YAMAGUCHI, Jap. J. Appl. Phys. 5 , 639 (1966).

25. C. VAN OPDORP and H. K. J. KANERVA, Solid State Electron. 10, 401 (1967). 26. C. VAN OPDORP and J. VRAKKING, Solid State Electron. 10, 955 (1967). 27. C. J. M. VAN OPDORP, Philips Res. Reports, Suppl. N o . 10 (1969). 28. K. KURATA and T. HIRAI, / . Electrochem. Soc. 115, 869 (1968).

29. P. DURUPT, J. RAYNAUD and G. MESNARD, Solid State Electron. 12, 469 (1969). 30. Y A . A. FEDOTOV, G. A. GRUZDEVA, A. N . KOVALEV and V. A. SUPALOV, Soviet Phys. Sem. 4,699 (1970). 31. G. A. GRUZDEVA, A. N . KOVALEV, V. A. SUPALOV and Y A . A. FEDOTOV, Proc. Int. Conf on the Phys.

and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 155, Akadémiai Kiado, Budapest, 1971. 32. L. GUTAI, J. PFEIFER and I. MARKO, Proc. Int. Conf on the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 301, Akadémiai Kiado, Budapest, 1971. 33. C. SZÉKELY, I. BERTOTI, G. STUBNYA, L. VARGA and L. GUTAI, Proc. Int. Conf on the Phys. and Chem.

of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 341, Akadémiai Kiado, Budapest» 1971. 34. D. J. DUMIN, / . Electrochem. Soc. 117, 95 (1970).

35. R. GRIGOROVICI, N . CROITORU, E. TELEMAN and M. MARINA, Rev. Roumaine Phys. 10, 641 (1965).

36. G. E. ANNER, Proc. IEEE 57, 2150 (1969).

37. B. L. SHARMA, M. M. NAUTIYAL and S. N . MUKERJEE, Int. J. Electron. 32, 315 (1972).

38. V. F . KORZO, Soviet Phys. Sem. 2, 636 (1968).

39. P. J. DEASLEY, S. J. T. O W E N and P. W. WEBB, / . Mat. Sei. 5 , 1054 (1970).

40. H . J. HOVEL and A. G. MILNES, / . Electrochem. Soc. 116, 843 (1969).

41. H. J. HOVEL, Appl. Phys. Lett. 17, 141 (1970). 42. H. J. HOVEL and J. J. URGELL, / . Appl. Phys. 42, 5076 (1971).

43. H. J. HOVEL and A. G. MILNES, Int. J. Electron. 25, 201 (1968).

44. H. J. HOVEL and A. G. MILNES, IEEE Trans. Electron Devices ED-16, 766 (1969). 45. K. J. SLEGER, A. G. MILNES and D L. FEUCHT, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 73, Akadémiai Kiado, Budapest, (1971). 46. J. T. CALOW, S. J. T. O W E N and P. W. WEBB, Phys. Stat. Sol. 28, 295 (1968).

47. T. YAMATO, Jap. J. Appl. Phys. 4 , 541 (1965). 48. T. YAMATO, Proc. Int. Conf Lum., Budapest, p. 1895 (1966).

49. M. V. Κ ο τ and V. A. KOROTKOV, Ukr. Fiz. Zh. 13, 1817 (1968).

50. P. A. KOVALENKO, V. A. KOROTKOV and L. M. PANASJUK, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 363, Akadémiai Kiado, Budapest, 1971. 51. H. OKIMURA, Jap. J. Appl. Phys. 7, 1297 (1968). 52. M. E. CHUGUNOVA, M. I. ELINSON and A. G. ZHDAN, Soviet Phys. Solid State 11, 874 (1969). 53. H . VAN DIJK and J. GOORISSEN, Crystal Growth (Ed. H . S. PEISER), p . 531, Pergamon Press, U.K., 1967. 54. M. J. HAMPSHIRE, T. I. PRITCHARD and R. D. TOMLINSON, Solid State Electron. 13, 1073 (1970). 55. M. J. HAMPSHIRE, T. I. PRITCHARD, R. D . TOMLINSON and C. HACKNEY, / . Sei. Inst. 3 , 185 (1970).

56. M. J. HAMPSHIRE and R. D. TOMLINSON, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 323, Akadémiai Kiado, Budapest, 1971. 57. J. NAKAI, A. YASHUOKA, T. OKUMURA and G. K A N O , Jap. J. Appl. Phys. 4 , 545 (1965).

193

SEMICONDUCTOR HETEROJUNCTIONS

58. P. L. JONES, C. N . W. LITTING, D . E. MASON and V. A. WILLIAMS, Brit. J. Appl. Phys. Ser. 2, 1, 283

(1968). 59. V. A. WILLIAMS, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 357, Akadémiai Kiado, Budapest, 1971. 60. R LILLEY, P. L. JONES and C. N . W. LITTING, / . Mat. Sei. 5, 891 (1970).

61. T. G. R. RAWLINS, / . Mat. Sei. 5, 881 (1970).

62. J. S. HILL, T. G. R. RAWLINS and G. N . SIMPSON, Signals Res. and Dev. Estab. Report N o . 69049 (Ministry of Techn., U.K., 1970).

63. P. WILKES, / . Mat. Sei. 4, 91 (1969). 64. E. LENDVAY, J. BALÀZS, M. G À L , G. GERGELY and J. SCHANDA, Proc. Int. Conf on the Phys. and Chem.

of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 263, Akadémiai Kiado, Budapest, 1971. 65. M. V. Κ ο τ and L. M. PANASIUK, Soviet Phys. Semicond. 1, 155 (1967). 66. A. KUNIOKA and Y. SAKAI, Jap. J. Appl. Phys. 7, 1138 (1968). 67. H. OKIMURA and R. KONDO, Jap. J. Appl. Phys. 9, 274 (1970). 68. H . OKIMURA, M. KAWAKAMI and Y. SAKAI, Jap. J. Appl. Phys. 6, 908 (1967).

69. S. BROJDO, T. J. RIELEY and G. T. WRIGHT, Brit. J. Appl. Phys. 16, 133 (1965). 70. D . J. PAGE, IEEE Trans. Electron Devices ED-12, 509 (1965). 71. B. N . ZUVONKOV, Izv. VUZ Fiz. (USSR) N o . 10, p. 116 (1970).

72. M. J. RAND and J. F . ROBERTS, / . Electrochem. Soc. 115, 423 (1968). 73. J. L. RICHARDS, P. B. HART and L. M. GALLONE, / . Appl Phys. 34, 3418 (1963). 74. L. J. VAN RUYVEN and W. DEKKER, Physica 28, 307 (1962).

75. 76. 77. 78. 79.

L. J. VAN RUYVEN, J. M. P. PAPENHUIJZEN and A. C. J. VERHOVEN, Solid State Electron. 8, 631 (1965). L. J. VAN RUYVEN, Thesis, T. Hogeschool, Eindhoven, 1964. M. AOKI and H. KASANO, Jap. J. Appl. Phys. (Suppl.) 39, 234 (1970). M. AOKI and H. KASANO, Ann. Rep. Engng Res. Inst., Univ. Tokyo, Japan 28, 97 (1969). Y. HAMAKAWA, T. S. Wu and H. KJTAMURA, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 313, Akadémiai Kiado, Budapest, 1971.

80. M. WEINSTEIN, R. O. BELL and A. A. MENNA, / . Electrochem. Soc. 111, 674 (1964). 81. T. D . DZHAFAROV, T. T. DEDEGKAEV, A. A. RASKIN, V. K. SUBASHIEV and L. S. CHERTKOVA, Soviet

Phys. Semicond. 1, 1395 (1968). 82. E. K. MÜLLER and J. L. RICHARDS, / . Appl. Phys. 35, 1233 (1964). 83. 84. 85. 86.

R. P. R U T H , J. C. MARINACE and W. C. DUNLAP, / . Appl. Phys. 3 1 , 995 (1960). J. C. MARINACE, IBM J. Res. Dev. 4, 280 (1960). M. I. NATHAN and J. C. MARINACE, Phys. Rev. 128, 2149 (1962). J. C. MARINACE, IBM J. Res. Dev. 4, 248 (1960).

87. R. L. ANDERSON, Solid State Electron. 5, 341 (1962). 88. R. L. ANDERSON, IBM J. Res. Dev. 4, 283 (1960).

89. A. LOPEZ and R. L. ANDERSON, Solid State Electron. 7, 695 (1964). 90. B. AGUSTA and R. L. ANDERSON, / . Appl. Phys. 36, 206 (1965). 91. C. I. Z. MAMMANA and R. L. ANDERSON, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 279, Akadémiai Kiado, Budapest, 1971. 92. T. OKADA, T. KANO and Y. SASAKI, / . Phys. Soc. Japan 16, 2591 (1961). 93. R. R. MOEST and B. R. SHUPP, / . Electrochem. Soc. 109, 1061 (1962).

94. E. K. MÜLLER, / . Appl. Phys. 35, 580 (1964). 95. B. MOLNAR, J. J. FLOOD and M. H. FRANCOMBE, / . Appl. Phys. 35, 3554 (1964). 96. M. M. FANG and W. E. HOWARD, / . Appl. Phys. 35, 612 (1964). 97. J. SHIRAFUJI and M. NAKAYAMA, Jap. J. Appl. Phys. 3 , 801 (1964). 98. R. H . REDIKER, S. STOPEK and J. H . R. WARD, Solid State Electron. 7, 621 (1964). 99.1. R Y U and K. TAKAHASHI, Jap. J. Appl. Phys. 4 , 850 (1965). 100. V. K. ALADINSKII and A. A. MASLOV, Soviet Phys. Solid State 7, 2789 (1966). 101. R. F . LEVER and E. J. HUMINSKI, / . Appl. Phys. 37, 3638 (1966). 102. R. G. SCHULZE, / . Appl. Phys. 37, 4295 (1966). 103. P. W. KRUSE and R. G. SCHULZE, Solid State Comm. 7, N o . 11, XXI (1969).

104. P. W. KRUSE, S. T. Liu, R. G. SCHULZE and S. R. PETERSON, / . Appl. Phys. 40, 5401 (1969).

105. T. T. ANH-NGUYEN and J. VUILLOD, Rev. de Phys. Appl. 1, 161 (1966). 106. P. H . ROBINSON, RCA Rev. 24, 574 (1963).

107. Y A . A. FEDOTOV, E. A. MATSON and K. V. CHERKAS, Soviet Phys. Semicond. 1, 106 (1967).

194

SURVEY OF EXPERIMENTAL WORK

108. 109. 110. 111. 112. 113.

H. KASANO and S. IIDA, Jap. J. Appl. Phys. 6, 1038 (1967). E. S. MEIERAN, J. Electrochem. Soc. 114, 292 (1967). R. KONTRIMAS and A. E. BLAKESLEE, Electrochem. Tech. 6, 78 (1968). J. E. DAVEY and T. PANKEY, / . Appl. Phys. 39, 1941 (1968). A. LAUGIER, M. GAVAND and G. MESNARD, Solid State Electron. 13, 741 (1970). A. LAUGIER and G. MESNARD, Solid State Comm. 8, 83 (1970).

114. A. LAUGIER, M. GAVAND, L. MAYET and L. CASTET, Thin Solid Films 6, 217 (1970).

115. D . K. JADUS and D . L. FEUCHT, IEEE Trans. Electron Devices ED-16, 102 (1969). 116. G. O. LADD, Jr. and D . L. FEUCHT, Metall. Trans. 1, 609 (1970). 117. D. L. FEUCHT, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 39, Akadémiai Kiado, Budapest, 1971. 118. E. I. ADIROVICH, L. A. DUBROVSKII, V. M. RUBINOV and L. B. SUZDALKTNA, Soviet Phys. Dokl. 13,

922 (1969). 119. J. HALE, Phys. Stat. Sol. (a) 1, 245 (1970). 120. H. SIGMUND, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 435, Akadémiai Kiado, Budapest, 1971. 121. L. G. LAVRENTYEVA and I. S. ZAKHAROV, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 253, Akadémiai Kiado, Budapest, 1971. 122. F. E. ROSZTOCZY and W.W. STEIN, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 333, Akadémiai Kiado, Budapest, 1971. 123. J. PERRIN and L. CAPELLA, Compte rendu, Acad. des Sei., 267, 218 (1968). 124. V. A. VLASOV and S. A. SEMILETOV, Soviet Phys. Cryst. 12, 645 (1968). 125. A. J. NOREIKA and M. H . FRANCOMBE, / . Vac. Sei. Tech. 6, 722 (1969).

126. E. T. PETERS, Manlabs, Inc., Cambridge (U.S.A.) Report (Dec. 1962-Nov. 1965), Cont. N o . A F 19 (628)-2438 Feb. 1966. 127. A. J. NOREIKA and D. W. I N G , / . Appl. Phys. 39, 5578 (1968). 128. F . J. R E I D , S. E. MILLER and H . L. GOERING, / . Electrochem.

129. 130. 131. 132. 133. 134.

Soc. 113, 467 (1966).

D. RICHMAN, / . Electrochem. Soc. 115, 945 (1968). D . E. BOLGER and B. E. BARRY, Nature 199, 4900, 1287 (1963). G. ZEEDENBERGS and R. L. ANDERSON, Solid State Electron. 10, 113 (1967). O. IGORASHI, / . Appl. Phys. 41, 3190 (1970). R. W. THOMAS, / . Electrochem. Soc. 116, 1449 (1969). J. NOACK and W. MOHLING, Phys. Stat. Sol. (a) 3 , K 229 (1970).

135. J. J. CUOMO and R. J. GAMBINO, / . Electrochem. Soc. 115, 755 (1968).

136. T. NAKANO, Jap. J. Appl. Phys. 6, 854 (1967). 137. S. G. SHUL'MAN and Yu. I. UKHANOV, Soviet Phys. Solid State 7, 768 (1965). 138. T. IDO, M. HIROSE and T. ARIZUMI, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 335, Akadémiai Kiado, Budapest, 1971. 139. K. BERCHTOLD, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 221, Akadémiai Kiado, Budapest, 1971. 140. V. F . K O R Z O and L. A. RYABOVA, Soviet Phys. Solid State 9, 745 (1967). 141. V. F . K O R Z O and L. A. RYABOVA, Soviet Phys. Sem. 3 , 517 (1969). 142.1. FELTINSH and L. A. FREIBERGA, Latv. PSR Zinst. Akad. Vestis Fiz. Techn. Ser. {USSR), p. 123 (1965). 143. D . M. JACKSON, Jr. and R. W. HOWARD, Trans. Metall. Soc. AIME 233, 468 (1965). 144. R. L. TALLMAN, T. L. C H U , G. A. GRUBER, J. J. OBERLY and E. D . WOLLEY, / . Appl. Phys. 37, 1588

(1966).

145. E. MACHEVSKII, I. P. NEIMANNE, I. A. FELTYN and L. A. FREIBERGA, Latv. PSR Zinst. Akad. Vestis Fiz.

Tech. Ser. (USSR) 6, 62 (1969). 146. J. L. DAVIS and M. K. N O R R , / . Appl. Phys. 37, 1670 (1966).

147. G. GUIZZETTI, E. REGUZZONI and G. SAMOGGIA, Alta Frequenza 39, 554 (1970). 148. G. GUIZZETTI, F . FILIPPINI, E. REGUZZONI and G. SAMOGGIA, Phys. Stat. Sol. (a) 6, 605 (1971).

149. 150. 151. 152. 153. 154.

H . SIGMUND and K. BERCHTOLD, Phys. Stat. Sol. 20, 255 (1967). D . A. KIEWIT, Phys. Stat. Sol. (a) 1, 725 (1970). Y. SAKAI and H . FUKUDA, Jap. J. Appl. Phys. 7, 303 (1968). H . FUKUDA and Y. SAKAI, Jap. J. Appl. Phys. 9, 429 (1970). C. H. GRIFFITHS and H . SANG, Appl. Phys. Lett. 11, 118 (1967). C. H . CHAMPNESS, C. H. GRIFFITHS and H . SANG, Appl. Phys. Lett. 12, 314 (1968).

195

SEMICONDUCTOR HETEROJUNCTIONS 155. C. H . CHAMPNESS, C. H. GRIFFITHS and H. SANG, The Physics of Se and Te (Ed. W. C. COOPER), p. 349,

Pergamon Press, N.Y., 1969.

156. T. SHIOSAKI, A. KAWABATA and T. TANAKA, Jap. J. Appl. Phys. 9, 631 (1970). 157. T. SHIOSAKI, M. ITO, A. KAWABATA and T. TANAKA, Jap. J. Appl. Phys. 8, 407 (1970). 158. N . Z. DZHALILOV, G. I. IBAEV and D. S H . ABDINOV, Phys. Stat. Sol. 40, K 5 (1970).

159. 160. 161. 162. 163. 164. 165.

H. P. HEMPEL, Zeit. Angew. Physik 22, 196 (1967). S. M. SYMES and D. A. VERMILYEA, J. Appl. Phys. 36, 3687 (1965). A. KUNIOKA and Y. SAKAI, Solid State Electron. 8, 961 (1965). R. M. MOORE and C. J. BUSANOVICH, IEEE Trans. Electron Devices ED-17, 305 (1970). R. M. MOORE and C. J. BUSANOVICH, Proc. IEEE 57, 735 (1969). R. M. MOORE and C. J. BUSANOVICH, IEEE Trans. Electron Devices ED-16, 850 (1969). J. KiSPÉTER, J. LANG and L. GOMBAY, ActaPhys. Chem. Szeged (Hungary) 10, 85 (1964).

166. A. HOFFMAN and F. ROSE, Z. Physik 136, 152 (1953).

167. G. E. ANNER, Proc. IEEE ST, 1219 (1969). 168.1. T. DRAPAK, IZV. VUZ. Fiz. (USSR) 7, p. 126 (1969). 169. V. A. DROZDOV, SH. D. KURMASHEV and A. L. RVACHEV, Soviet Phys. Doklady 10, 450 (1965). 170. M. AVEN and D. A. CUSANO, / . Appl. Phys. 35, 606 (1964). 171. A. N . GEORGOBIANI and V. I. STEBLIN, Soviet Phys. Semicond. 1, 772 (1967). 172. A. N . GEORGOBIANI and V. I. STEBLIN, Phys. Stat. Sol. 2 1 , K 4 5 (1967). 173. E. D . GOLOVKINA, V. V. PASINKOV and G. M. CHANINA, Optika i Spektroskopiya

174. 175. 176. 177. 178.

19, 281 (1967).

N . A. VLASENKO and A. N . GERGELL, Phys. Stat. Sol. 26, K 77 (1968). P. N. KEATING, / . Phys. Chem. Solids 24, 1101 (1963). W. D. GILL and R. H. BUBE, / . Appl. Phys. 41, 3731 (1970); 41, 1694 (1970). N . MIYA, Jap. J. Appl. Phys. 9, 768 (1970). S. Yu. PAVELETS, G. A. FEDORUS and Y A . F. KONONETS, Soviet Phys. Semicond. 4 , 282 (1970).

179. A. I. MARCHENKO, S. Y U . PAVELETS and G. A. FEDORUS, Ukr. Fiz. Zh. 15, 1530 (1970).

180. N . NAKAYAMA, Jap. J. Appl. Phys. 8, 450 (1969). 181. R. J. MYTTON, Brit. J. Appl. Phys. Ser. 2 1, 721 (1968).

182. B. SELLE, W. LUDWIG and R. M A C H , Phys. Stat. Sol. 24, K 149 (1967).

183. B. SELLE, P. KRISPIN and J. MAEGE, Proc. Int. Conf. on the Phys. and Chem. ofSemicond. Heteroj unctions (Editor-in-chief G. SZIGETI), vol. II, p. 427, Akadémiai Kiado, Budapest, 1971. 184. F . A. SHIRLAND, Adv. Energy Conv. 6, 201 (1966). 185. M. BALKANSKII and B. CHONE, Rev. Phys. Appl. 1, 179 (1966). 186. E. R. HILL and B. G. KERAMIDAS, IEEE Trans. Electron Devices ED-14, 22 (1967). 187. J. SINGER and P. A. FAETH, Appl. Phys. Lett. 11, 130 (1967). 188. R. Κ. PUROHIT, B. L. SHARMA and A. K. SREEDHAR, / . Appl. Phys. 40, 4677 (1969). 189. T. SHITAYA and H. SATO, Jap. J. Appl. Phys. 7, 1348 (1968). 190. J. MATSUZAKI, Tech. J. Japan Broadcasting Corp. 2 1 , N o . 6, 45 (1969). 191. A. V. ANSHON and I. A. KARPOVICH, Soviet Phys. Semicond. 3 , 503 (1969). 192. I. V. EGOROVA, Soviet Phys. Sem. 2, 266 (1968). 193. J. LINDMAYER and A. G. RÉVÉSZ, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 397, Akadémiai Kiado, Budapest, 1971. 194. S. MARTINUZZI, F . CABANE-BROUTY, J. P. SORBIER, J. F . BRETZNER and J. P. DAVID, Proc. Int. Conf

on

the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 287, Akadémiai Kiado, Budapest, 1971. 195. B. W. HAKKI, Appl. Phys. Lett. 11, 153 (1967).

196. A. P. LANDSMAN, U. I. SHVETZ, B. L. ALTSHULER and R. N . TYKVENKO, Proc. Int. Conf. on the Phys.

and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 373, Akadémiai Kiado, Budapest, 1971. 197. V. N . KOMASHCHENKO and G. A. FEDORUS, Soviet Phys. Semicond. 1, 411 (1967).

198. V. N . KOMASHCHENKO, S. KYNEV, A. I. MARCHENKO and G. A. FEDORUS, Ukr. Fiz. Zh. 13,2086 (1968).

199. V. N. KOMASHCHENKO and G. A. FEDORUS, Ukr. Fiz. Zh. 13, 688 (1968); Soviet Phys. Semicond. 3 , 1001 (1970). 200. V. N . KOMASHCHENKO, N . B. LUKYANCHIKOVA, G. A. FEDORUS and M. K. SHEINKMAN, Proc. Int. Conf

on the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 213, Akadémiai Kiado, Budapest, 1971.^ 201. D. A. CUSANO, Solid State Electron. 6, 217 (1963); Rev. Phys. Appl. 1, 195 (1966). 202. D. A. CUSANO and M. R. LORENZ, Solid State Comm. 2, 125 (1964).

196

SURVEY OF EXPERIMENTAL W O R K

203. J. BERNARD, R. LANÇON, C. PAPARODITIS and M. RODOT, Rev. Phys. Appl. 1, 211 (1966).

204. A. P. LANDSMAN, and R. N . TYKVENKO, Radio Engng Electron Phys. 12, 461 (1967). 205. J. LEBRUN, Rev. Phys. Appl. 1, 204 (1966). 206. R. GUILLIEN, P. LEITZ and W. PALZ, Proc. Int. Conf. on the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 283, Akadémiai Kiado, Budapest, 1971. 207. M. J. CHOCKALINGAM, K. N . R A O , N . RANGARAJAN and C. V. SURYANARAYAN, Phys. Stat. Sol. (a) 2,

K 17 (1970).

208. G. A. ROZGONYI and W. J. POLITO, / . Vac. Sei. Techn. 6, 115 (1969). 209. H . SEILER, P. REIMERS and INDRADEV, Mat. Res. Bull. 4 , 119 (1969).

210. W. W. PIPER and S. J. POLICH, / . Appl. Phys. 32, 1278 (1961).

211. W. J. BITER and R. B. LAUER, / . Electrochem. Soc. 117, 126 (1970).

212. R. J. CAVENEY, / . Cryst. Growth 2, 85 (1968). 213. L. J. VAN RUYVEN and INDRADEV, / . Appl. Phys. 37, 3324 (1966).

214. W. SPENCE, W. A. GUITERREZ and H . L. WILSON, Proc. IEEE 54, 294 (1966). 215. H . SERIZAWA, O. EGUCHI, Y. TSUJIMOTO and M. FUKAI, / . Appl. Phys. 4 1 , 5032 (1970).

216. Y. TSUJIMOTI and M. FUKAI, Jap. J. Appl. Phys. 6, 1013 (1967); 6, 1024 (1967).

217. K. K. DUBENSKII, A. V. RUMYANTSEVA, Y U . S. RYZHKIN and V. I. TRAPEZNIKOV, Soviet Phys.

4, 845 (1970).

2 1 8 . 1 . K. ANDRONIK, P. A. GASHIN, I. V. DEMENTIEV, G. P. LISTUNOV, L. M. PANASJUK,

Semicond.

A. V. SIMASH-

KEVICH and D . A. SHERBAN, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 211, Akadémiai Kiado, Budapest, 1971. 219. M . V. Κ ο τ , L. M. PANASJUK, A. V. SIMASHKEVICH, A. E. TSURKAN and D . A. SHERBAN, Soviet

Solid State 7, 1001 (1965). 220. L. A. SERGEEVA, I. P. KALINKIN and V. B. ALESKOVSKII, Soviet Phys. Cryst. 10, 178 (1965). 221. W. A. GUITERREZ and H . L. WILSON, Proc. IEEE 53, 749 (1965). 222. T. IDO, S. OSHIMA and M. SAJI, Jap. J. Appl. Phys. 7, 1141 (1968).

Phys.

223. M. AVEN and W. GARWACKI, / . Electrochem. Soc. 110, 401 (1963).

224. M. AVEN and D. M. COOK, / . Appl. Phys. 32, 960 (1961).

225. A. V. VANYUKOV, A. N . KOVALEV, N . M. KONDAUROV, V. A. SUPALOV and Y A . A. FEDOTOV,

Soviet

Phys. Semicond. 4, 1157 (1971). 226. A. V. VANYUKOV, P. S. KIREEV, E. N . FIGUROVSKII, A. P. KOROVIN and Z. P. VISHNYAKOVA,

Soviet

Phys. Semicond. 3 , 1297 (1970). 227. H . ARNOLD, T. KAUFMANN and R. M A C H , Phys. Stat. Sol. (a) 1, K 5 (1970).

228. P. A. GASHIN and A. V. SIMASHKEVICH, IZV. AN USSR Ser. Neorg. Mat. 4, 1803 (1968). 229. B. KANDILAROV and R. ANDREYTCHIN, Phys. Stat. Sol. 8, 897 (1965). 230. E. A. MUZALEVSKI, I. D . KONOZENKO, A. A. PAVLENKO and S. K H . KUSHNEIR, Ukr. Fiz. Zh. 1 1 , 4 3 6

(1966).

2 3 1 . 1 . D . KONOZENKO, S. K H . KUSHNEIR, E. A. MUZALEVSKY, A. P. OSTRANISTRA, A. A. PAVELENKO and

N. S. PETRENKO, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 221, Akadémiai Kiado, Budapest, 1971. 2 3 2 . 1 . A. GRYADIL, N . I. DOVGOSHEI, V. M. BENTSU, D . V. CHEPUR, P. I. OTROKH and T. I. POVKHAN,

Izv. VUZ. Fiz. (USSR) 8, 150 (1970). 233. M. WEINSTEIN, G. A. W O L F F and B. N . D A S , Appl. Phys. Lett. 6, 73 (1965). 234. M. WEINSTEIN and G. A. W O L F F , Crystal Growth (Ed. H . STEFFEN PEISER), p . 537, Pergamon Press,

1967. 235. E. I. ADIROVICH, Y U . M. YUABOV and G. R. YAGUDEVA, Soviet Phys. Doklady 15, 553 (1970). 236. E. I. ADIROVICH, Y U . M. YUABOV and G. R. YAGUDEVA, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 151, Akadémiai Kiado, Budapest, 1971. 237. R. W. DUTTON and R. S. MÜLLER, Solid State Electron. 11, 749 (1968). 238. R. S. MÜLLER and R. ZULEEG, / . Appl. Phys. 35, 1550 (1964). 239. A. A. PAVLENKO, E. A. MUZALEVSKII and I. D . KONOZENKO, Inorg. Materials 3 , 1007 (1967).

240. Y. MARFAING, G. COHEN-SOLAL and F . BAILLY, / . Phys. Chem. Solids, Suppl. 1, 549 (1967). 241. J. BERTOTI, M. FARKAS-JAHNKE, E. LENDVAY and T. NÉMETH, / . Mat. Sei. 4 , 699 (1969).

242. M. F . KUZNETSOV and P. E. RAMAZANOV, IZV. VUZ. Fiz. (USSR), 7, 146 (1969). 243. M. F . KUZNETSOV and P. E. RAMAZANOV, IZV. VUZ. Fiz. (USSR), 8, 148 (1970).

244. S. A. SEMILETOV, Opt. Spectrosc. 19, 142 (1965).

245. R. M A C H , W. LUDWIG, G. EICHHORN and H. ARNOLD, Phys. Stat. Sol. (a) 2 , 701 (1970).

197

SEMICONDUCTOR HETEROJUNCTIONS

246. S. G. PARKER, / . Cryst. Growth 9, 177 (1971). 247. S. G. PARKER and J. E. PINNELL, / . Appl. Phys. 42, 3012 (1971). 248. G. BOUGNOT, D . ETIENNE, J. CHEVRIER and C. BOHE, Mat.

Res. Bull. 6, 145 (1971).

249. J. NAKAI, S. KAMURO, M . FUKUSHIMA and C. HAMAGUCHI, Proc. Int. Conf. on the Phys. and Chem.

of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 319, Akadémiai Kiado, Budapest, 1971. 250. H . SERREZE, S. FISCHLER and D . SAWYER, / . Appl. Phys. 39, 5330 (1968). 251. K. TAKAHASHI, W. D . BAKER and A. G. MILNES, Int. J. Electron. 27, 383 (1969).

252. T. MORRIZUMI and K. TAKAHASHI, Jap. J. Appl. Phys. 9, 849 (1970). 253. Y. M. KOTELYANSKIY, A. Yu. MITYAGIN and V. P. ORLOV, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 231, Akadémiai Kiado, Budapest, 1971.

254. R. F . POTTER and G. G. KRETSCHMAR, / . Opt. Soc. America 51, 693 (1961). 255. Z H . I. ALFEROV, V. I. KOROL'KOV, I. P. MIKHAILOVA-MIKHEEVA,

V. N . ROMANENKO and V. M. T U C H -

KEVICH, Soviet Phys. Solid State 6, 1865 (1965). 256. S. A. AITKHOZHIN and Y u . S H . TEMIROV, Kristallografia (USSR) 15, 1057 (1970). 257. L. MLADEV, P. KAMADIEV and L. PANTELEEVA, Phys. Stat. Sol. 35, K 9 (1969).

258. M. HÂRSY, N. VARGHA, E. LENDVAY and L. VARGA, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 179, Akadémiai Kiado, Budapest, 1971. 259. N . I. DOVGOSHEI, D . V. CHEPUR, I. F . KOPINETS, V. F . ZOLOTAREV, V. I. STAFEEV and A. M. FANTICH,

Izv. VUZ Fiz. (USSR), no. 8, 158 (1970). 260. E. A. SAL'KOV, Soviet Phys. Solid State 7, 227 (1965). 261. S. WATANABE and Y. MITA, / . Electrochem. Soc. 116, 989 (1969); Solid State Electron. 15, 5 (1972). 262. 263. 264. 265.

S. K. SURI and B. L. SHARMA (to appear in Int. J. Electron.). H. KOMURA, O. YONEYAMA, K. MORIOKO and H. MITSUHASHI, Jap. J. Appl. Phys. 9, 1546 (1970). H. KODERA, J. SHIRAFUJI and K. KURATA, Jap. J. Appl. Phys. 5 , 743 (1966). T. D . DZHAFAROV, M. I. STEPANOVA and V. K. SUBASHIEV, Soviet Phys. Sem. 1, 1087 (1967).

266. M. ETTENBERG, A. G. SIGAI, A. DREEBEN and S. L. GILBERT, / . Electrochem.

Soc. 118, 1355 (1971).

267. K. R. FAULKNER, D . K. WICKENDEN, B. J. ISHERWOOD, B. P. RICHARD and I. H . SCOBEY, / . Mat.

5, 308 (1970).

Sei.

268. M. E. DAVIS, G. ZEIDENBERGS and R. L. ANDERSON, Phys. Stat. Sol. 34, 385 (1969).

269. M. E. DAVIS, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. H, p. 259, Akadémiai Kiado, Budapest, 1971. 270. S. W. ING, Jr. and H. T. MINDEN, / . Electrochem. Soc. 109, 995 (1962). 271. A. I. MLAVSKY and M. WEINSTEIN, / . Appl. Phys. 34, 2885 (1963). 272. Z H . I. ALFEROV, V. L KOROL'KOV, M. K. TRUKAN and S. P. CHASHCHIN, Soviet Phys. Solid State 7 ,

1915 (1966). 273. Z H . I. ALFEROV, V. I. KOROL'KOV and M. K. TRUKAN, Soviet Phys. Solid State 8, 2813 (1967). 274. Z H . I. ALFEROV, D. Z. GARBUZOV and E. P. MOROZOV, Soviet Phys. Semicond. 1, 389 (1967).

275. Z H . I. ALFEROV, N . S. ZIMOGOROVA, M. K. TRUKAN and V. M. TUCHKEVICH, Soviet Phys. Solid State 7 ,

276. 277. 278. 279. 280.

990 (1965). R. K. PUROHIT, Phys. Stat. Sol. 24, K 57 (1967). L. C. LUTHER, Metall. Trans. 1, 593 (1970). R. C. TAYLOR, J. F . WOODS and M. R. LORENZ, / . Appl. Phys. 39, 5404 (1968). E. G. DIERSCHKE and G. L. PEARSON, / . Appl. Phys. 41, 321 (1970). D. RICHMAN and J. J. TIETJEN, Trans. Metall. Soc. AIME239, 418 (1967).

281. J. J. TIETJEN and J. A. AMICK, / . Electrochem. Soc. 113, 724 (1966). 282. Y. FURUKAWA, G. IWANE and S. A N D O , Jap. J. Appl. Phys. 8, 973 (1969). 283. G. S. KAMATH and D . BOWMAN, / . Electrochem. Soc. 114, 192 (1967).

284. L. C. LUTHER, / . Electrochem. Soc. 116, 374 (1969).

285. R. NICKLIN, A. W. RUSSELL and P. C. NEWMAN, Electron. Lett. 3 , 363 (1967).

286. C. J. FROSCH, C. D. THURMOND, H. G. WHITE and J. A. MAY, Trans. Metall. Soc. AIME239,365 287. H. FLICKER, B. GOLDSTEIN and P. A. Hoss, / . Appl. Phys. 35, 2959 (1974). 288. J. M I C H E L and D . FAHNY, J. Mat. Sei. 2, 299 (1967).

289. 290. 291. 292.

198

R. H. REDIKER, S. STOPEK and E. D . HINKLEY, Trans. Metall Soc. AIME 233, 463 (1965). R. B. CLOUGH and J. J. TIETJEN, Trans. Metall. Soc. AIME 245, 583 (1969). W. G. OLDHAM and A. G. MILNES, Solid State Electron. 6, 121 (1963). H. SEKI and M. KINOSHITA, Jap. J. Appl. Phys. 7, 1142 (1968).

(1967).

SURVEY OF EXPERIMENTAL W O R K 293. N . R. AIGINA, M. A. GUREVICH, N . M. DEMENKOV, L. A. ZHUKOVA, V. N . MASLOV and B. A. SAKHA-

ROV, Inorganic Materials 3 , 144 (1967). 294. J. J. TIETJEN, R. E. ENSTROM and D . RICHMAN, RCA Rev. 3 1 , 635 (1970). 295. G. R. CRONIN, R. W. CONRAD and S. R. BORRELLO, / . Electrochem.

296. 297. 298. 299.

300. 301. 302. 303. 304.

Soc. 113, 1336 (1966).

H. T. MINDEN, / . Electrochem. Soc. 112,300 (1965). J. P. MCCARTHY, Solid State Comm. 5 , 5 (1967); Solid State Electron. 10, 649 (1967). H. GODINHO and A. BRUNNSCHWEILER, Solid State Electron. 13, 47 (1970). V. A. VLASOV and S. A. SEMILETOV, Soviet Phys. Semicond. 2,1053 (1969); Soviet Phys. Cryst. 13, 580 (1969). G. E. BAUER, Zeit. Naturforsch. ΙΙΛ, 284 (1967). E. D. HINKLEY, R. H. REDIKER and D. K. JADUS, Appl. Phys. Lett. 6, 144 (1965). E. D . HINKLEY and R. H. REDIKER, Solid State Electron. 10, 671 (1967). E. D. HINKLEY, R. H . REDIKER and M. C. LAVINE, Appl. Phys. Lett. 5 , 110 (1964). N . K. KISELEVA, Soviet Phys. Cryst. 9, 365 (1964); Rad. Engng Electron. Phys. 9, 1574 (1965).

305. J. J. TIETJEN, H . P. MARUSKA and R. B. C L O U G H , / . Electrochem.

Soc. 116, 492 (1969).

306. F . V. WILLIAMS, U.S. Pat. 3,210,624, Oct. 5, 1965.

307. 308. 309. 310. 311. 312.

T. L. C H U , J. M. JACKSON, A. E. HYSLOP and S. C. C H U , / . Appl. Phys. 42, 420 (1971). T. L. C H U , D . W. ING and A. G. NOREIKA, Solid State Electron. 10, 1023 (1967). L. L. CHANG, L. ESAKI and P. J. STILES, / . Appl. Phys. 39, 6049 (1968). B. L. SHARMA and S. N . MUKERJEE, Phys. Stat. Sol. (a) 2 , K 21 (1970). B. L. SHARMA and S. K. SURI, Phys. Stat. Sol. (a) 16, K47 (1973). J. W. MATTHEWS, Phil. Mag. 6, 1347 (1961).

313. G. GERGELY, I. JÀNOSSY, M. MENYHÀRD, J. PEISNER, C. SZÉKELY and. G. STUBNYA, Proc. Int. Conf

on

the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 147, Akadémiai Kiado, Budapest, 1971. 314. G. O. KRAUSE, / . Vac. Sei. Tech. 6, 582 (1969). 315. R. A. BURMEISTER, Jr. and R. W. REGEHR, Trans. Metall. Soc. AIME 1AS, 565 (1969). 316. L. L. CHANG, Solid State Electron. 8, 86 (1965); 8, 721 (1965). 317. Z H . I. ALFEROV, V. M. ANDREEV,

S. G. KONNIKOV,

V. G. ΝΙΚΠΤΝ and D . N . TRET'YAKOV, Proc.

Int.

Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 93, Akadémiai Kiado, Budapest, 1971. 318. K. A. ARSENI, T. D . DZHAFAROV and T. T. DEDEGKAEV, Soviet Phys. Semicond. 3 , 788 (1969). 319. R. J. HERITAGE, P. PORTEOUS and B. J. SHEPPARD, / . Mat. Sei. 5, 709 (1970).

320. B. D . JOYCE, K. M. FAIRHURST, R. C. CLARKE and P. J. BORN, / . Cryst. Growth 11, 243 (1971).

321. A. ONTON, M. R. LORENZ and W. REUTER, / . Appl. Phys. 42, 3420 (1971). 322. K. K. SHIH, / . Electrochem. Soc. Ill, 387 (1970). 323. J. R. ARTHUR and J. J. LEPORE, J. Vac. Sei. Tech. 6, 545 (1969).

324. SAN-MEI-KU, / . Electrochem. Soc. 110, 991 (1963).

325. H. A. ALLEN and E. W. MEHAL, / . Electrochem. Soc. 117, 1081 (1970).

326. M. B. PANISH, I. HAYASHI and S. SUMSKI, IEEE J. Quantum Electron. QE-5, 210 (1969). 327.1. HAYASHI, M. B. PANISH and P. W. F O Y , IEEE J. Quantum Electron. QE-5, 211 (1969). 328. E. A. ULMER and I. HAYASHI, IEEE J. Quantum Electron. QE-6, 297 (1970). 329.1. HAYASHI and M. B. PANISH, / . Appl. Phys. 4 1 , 150 (1970). 330. M. B. PANISH, S. SUMSKI and I. HAYASHI, Metall. Trans. 2 , 795 (1971). 331. I. HAYASHI, M. B. PANISH and F . K. REINHART, J. Appl. Phys. 42, 1929 (1971). 332. B. I. MILLER, E. PINKAS, I. HAYASHI and R. J. CAPIK, / . Appl. Phys. 43, 2817 (1972).

333. E. PINKAS, B. I. MILLER, I. HAYASHI and P. W. F O Y , / . Appl. Phys. 4 3 , 2827 (1972). 334. M. B. PANISH and I. HAYASHI, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 419, Akadémiai Kiado, Budapest, 1971. 335. B. I. MILLER, J. E. RIPPER, J. C. DYMENT, E. PINKAS and M. B. PANISH, Appl. Phys. Lett. 18,403 (1971).

336. M. B. PANISH, I. HAYASHI and S. SUMSKI, Appl. Phys. Lett. 16, 326 (1970). 337. I. HAYASHI, M. B. PANISH, P. W. F O Y and S. SUMSKI, Appl. Phys. Lett. 17, 109 (1970).

338. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and D . N . TRET'YAKOV, Soviet

Sem. 2, 1289 (1969).

339. Z H . I. ALFEROV, V. M. ANDREEV, E. L. PORTNOI and M. K. TRUKAN, Soviet Phys. Semicond.

(1970).

Phys,

3 , 1107

340. Z H . I. ALFEROV, V. M. ANDREEV, D . Z. GARBUZOV, Y U . V. ZHILYAEV, E. P. MOROZOV, E. L. PORTNOI

and V. G. TROFIM, Soviet Phys. Semicond. 4 , 1573 (1971).

199

SEMICONDUCTOR HETEROJUNCTIONS 341. Z H . I. ALFEROV, V. M. ANDREEV,

F . A. GIMMEL'FARB,

L. M. DOLGINOV,

Y U . A. ZHITKOV, L. D .

LIBOV, E. L. PORTNOI, V. G. TROFIM, M. K. TRUKAN and E. G. SHEVCHENKO, Soviet Phys.

Semicond.

4, 1457(1971).

342. Z H . I. ALFEROV, V. M. ANDREEV, V. I. BORODULIN, G. T. PAK, E. L. PORTNOI and V. I. SHVEIKIN,

Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 159, Akadémiai Kiado, Budapest, 1971. 343. Z H . I. ALFEROV, V. M. ANDREEV, D . Z. GARBUZOV, E. P. MOROZOV, E. L. PORTNOI, M. K. TRUKAN

and V. G. TROFIM, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterjunctions (Editor-in-chief G. SZIGETI), vol. II, p . 171, Akadémiai Kiado, Budapest, 1971. 344. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and D . N . TRET'YAKOV, Krist. Tech.

4, 495 (1969).

345. Z H . I. ALFEROV, V. M. ANDREEV, P. G. ELISEEV, I. Z. PINSKER and E. L. PORTNOI, Soviet Phys.

4, 2057 (1971).

Sem.

346. H . KRESSEL and H . NELSON, RCA Rev. 30, 106 (1969).

347. H. NELSON and H. KRESSEL, Appl. Phys. Lett. 15, 7 (1969). 348. H. F. LOCKWOOD, H. KRESSEL, H. S. SOMMERS, Jr. and F. Z. HAWRYLO, Appl. Phys. Lett. 17,499 (1970). 349. H. KRESSEL, H. F. LOCKWOOD and F. Z. HAWRYLO, Appl. Phys. Lett. 18, 43 (1971); / . Appl. Phys. 4 3 , 561 (1972). 350. H. KRESSEL and F. Z. HAWRYLO, Appl. Phys. Lett. 17, 169 (1970). 351. H. KRESSEL, H. F . LOCKWOOD and H. NELSON, IEEE J. Quantum Electron. QE-6, 278 (1970). 352. J. M. WOODALL, / . Electrochem. Soc. 118, 150 (1971). 353. A. R. GOODWIN and P. R. SELWAY, IEEE J. Quantum Electron. QE-6, 285 (1970). 354. H . YONEZU, I. SAKUMA and Y. NANNICHI, Jap. J. Appl. Phys. 9, 231 (1970). 355. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and A. A. YAKOVENKO, Soviet Phys.

Semicond. 3 , 785 (1969).

356. Z H . I. ALFEROV, V. M. ANDREEV, E. L. PORTNOI and 1.1. PROTASOV, Soviet Phys. Semicond.

(1970).

3 , 1103

357. Z H . I. ALFEROV, V. M. ANDREEV, N . S. ZIMOGOROVA and D. N . TRET'YAKOV, Soviet Phys. Semicond. 3 ,

1373(1970).

358. Z H . I. ALFEROV, V. K. ERGAKOV, V. I. KOROL'KOV, V. G. NIKITIN, D . N . TRET'YAKOV and A. A.

YAKOVENKO, Soviet Phys. Semicond. 4, 1748 (1970).

359. Z H . I. ALFEROV, V. I. KOROL'KOV, V. G. NIKITIN, D . N . TRET'YAKOV and A. A. YAKOVENKO, Proc.

Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 183, Akadémiai Kiado, Budapest, 1971. 360. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and D . N . TRET'YAKOV, Soviet Phys.

Semicond. 4, 132(1970).

361. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, V. G. NIKITIN and A. A. YAKOVENKO, Soviet Phys.

Semicond. 4, 481 (1970). 362. Z H . I. ALFEROV and O. A. NINUA, Soviet Phys. Semicond. 4, 296 (1970).

363. Z H . I. ALFEROV, V. M. ANDREEV, M. B. KAGAN, I. I. PROTASOV and V. G. TROFIM, Soviet

Semicond. 4, 2047 (1971).

364. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV and V. I. STREMIN, Soviet Phys. Semicond.

(1971).

Phys.

4 , 1113

365. V. M. ANDREEV, V. I. KOROL'KOV, Z. M. KUBINTZEVA, Y U . R. NOSOV, N . V. POSTNIKOVA and V. G.

RESHETNYAK, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 201, Akadémiai Kiado, Budapest, 1971.

366. J. F . BLACK and S A N - M E I - K U , / . Electrochem. Soc. 113, 249 (1966).

367. C. CONSTANTINESCU and A. GOLDENBLUM, Phys. Stat. Sol. (a) 1, 551 (1970); 3 , 811 (1970). 368. H. RUPPRECHT, J. M. WOODALL and G. D . PETIT, Appl. Phys. Lett. 11, 81 (1967).

369. V. M. ANDREEV, O. I. DAVARASHVILI, M. S. MATTNOVA, G. M. MIRIANASHVILI, T. D .

MKHEIDZE,

R. A. CHARMAKADZE and R. I. CHIKOVANI, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 195, Akadémiai Kiado, Budapest, 1971.

370. H. KRESSEL, E. S. K O H N , H. NELSON, J. J. TIETJEN and L. R. WEISBERG, Appl. Phys. Lett. 16, 359 (1970).

371. H. SCHADE, H. NELSON and H. KRESSEL, Appl. Phys. Lett. 18, 413 (1971). 372. T. L. TANSLEY, Phys. Stat. Sol. 23, 241 (1967); 24, 615 (1967). 373. T. L. TANSLEY, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 123, Akadémiai Kiado, Budapest, 1971. 374. J. R. DALE and M. J. JOSH, Solid State Electron. 8, 1 (1965).

200

SURVEY OF EXPERIMENTAL W O R K

375. T. L. TANSLEY and P. C. NEWMAN, Solid State Electron. 10, 497 (1967). 376. Y A . A. FEDOTOV, S. G. MADOYAN a n d A. I. GRATSERSHTEIN, IZV. VUZ Fiz. N o . 7 (Suppl.) (1969).

377. Y A . A. FEDOTOV, A. I. GRATSERSHTEIN and N . S. ZIMOGOROVA, Soviet Phy's: Semicond. 4 , 838 (1970). 378. R. W. CONRAD, P. L. H O Y T and D . D . MARTIN, / . Electrochem.

379. G. A. ANTYPAS, / . Electrochem. Soc. 117, 1393 (1970). 380. M. INOUE and K. ASAHI, Jap. J. Appl. Phys. 11, 919 (1972).

Soc. 114, 164 (1967).

381. M. G. CRAFORD, W. O. GROVES and M. J. F o x , / . Electrochem. Soc. 118, 355 (1971).

382. Z H . I. ALFEROV, A. A. GAMAZOV and N . S. ZIMOGOROVA, Soviet Phys. Semicond. 2 , 493 (1968). 383. M . S. ABRAHAMS, L. R. WEISBERG, C. J. BUIOCCHI a n d J. BLANC, / . Mat. Sei. 4 , 223 (1969).

384. M. S. ABRAHAMS, L. R. WEISBERG and J. J. TIETJEN, / . Appl. Phys. 40, 3754 (1969). 385. T. D . DZHAFAROV, Proc. Int. Conf. on the Phys. and Chem. of Semicond. /feteröyw/icf/ö/w (Editor-in-chief G. SziGETi), vol. I, p . 131, Akadémiai Kiado, Budapest, 1971. 386. T. B. RAMACHANDRAN and W. J. MORONEY, Proc. IEEE 52, 1358 (1964). 387. T. B. RAMACHANDRAN, K. K. C H O W , M. J. WORONEY and P. OLENDZENSKY, / . Appl. Phys. 36, 2594

(1965).

388. Yu. M . KOZLOV, G. I. PICHAKHCHI, V. G. SIDOROV and Yu. I. UKHANOV, Fiz. Tekh. Poluprov.

4,1824 (1970). 389. G. A. ANTYPAS and L. W. JAMES, / . Appl. Phys. 41, 2165 (1970). 390. H . A. ALLEN, / . Electrochem. Soc. 117, 1417 (1970).

(USSR)

391. A. R. CLAWSON, D . L. LILE a n d H . H . WIEDER, / . Vac. Sei. Tech. 9, 392 (1972).

392. N. K. KISELEVA and B. T. KOLOMIETS, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 203, Akadémiai Kiado, Budapest, 1971. 393. G. A. ANTYPAS and T. O. Y E P , / . Appl. Phys. 42, 3201 (1971). 394. L. W. JAMES, G. A. ANTYPAS, J. J. UEBBING, T. O. Y E P and R. L. BELL, / . Appl. Phys. 42, 580 (1971). 395. R. W. HAMAKER and W. B. WHITE, / . Electrochem. Soc. 116, 478 (1969). 396. H . KRAUS, S. G. PARKER and J. P. SMITH, / . Electrochem.

397. A. G. FISCHER, / . Electrochem. Soc. 118, 139 C (1971).

Soc. 114, 616 (1967).

398. H . SERIZAWA, O. EGUCHI, Y. TSUJIMOTO and M. FUKAI, / . Appl. Phys. 41, 5032 (1970). 399. Y A . A. FEDOTOV, V. A. SUPALOV, N . P. SEMENYUK, A. V. VANYUKOV a n d N . M. KONDAUROV, Fiz.

Tekh. Poluprov. 5, 390 (1971). 400. Y A . A. FEDOTOV, V. A. SUPALOV, T. P. MANUILOVA, A. V. VANYUKOV and N . M. KONDAUROV, Fiz.

Tekh. Poluprov. 5, 1602 (1971). 4 0 1 . 1 . BERTOTI, L. VARGA, M . FARKAS-JAHNKE, T. NÉMETH a n d N . A. GORYUNOVA, Proc. Int. Conf. on the

Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 107, Akadémiai Kiado, Budapest, 1971. 402.1. BERTOTI, / . Mat. Sei. 5 , 1073 (1970).

403. A. V. ANSHON, I. A. KARPOVICH, E. I. LEONOV, V. M . ORLOV and V. V. PODOLSKH, Phys. Stat. Sol.

(a) 7, K 13 (1971).

404. N . A. GORYUNOVA, A. V. ANSHON, I. A. KARPOVICH, E. I. LEONOV and V. M. ORLOV, Proc. Int. Conf.

on the Phys. and Chem. of Semicond. Heteroj unctions (Editor-in-chief G. SZIGETI), vol. II, p. 275, Akadémiai Kiado, Budapest, 1971.

405. N . A. GORYUNOVA, A. V. ANSHON, I. A. KARPOVICH, E. I. LEONOV and V. M . ORLOV, Phys. Stat. Sol.

(a) 2, K 117 (1970).

406. A. J. SPRINGTHORPE, R. J. HARVEY and B. R. PAMPLIN, J. Cryst. Growth 6, 13 (1969).

407. B. R. PAMPLIN, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heteroj unctions (Editor-inchief G. SZIGETI), vol. I , p . 327, Akadémiai Kiado, Budapest, 1971. 408. Y. A. VALOV, N . A. GORYUNOVA, E. I. LEONOV a n d V. M . ORLOV, Acta Phys.

1 (1973). 409. V. P. POPOV and B. R. PAMPLIN, / . Cryst. Growth 15, 129 (1972).

Sei. Hung. 3 3 ,

410. S. WAGNER, J. L. SHAY, B. TELL and H . M . KASPER, Appl. Phys. Lett. 22, 231 (1973).

14

201