CHAPTER 8
SURVEY OF E X P E R I M E N T A L WORK ON HETEROJUNCTIONS As CAN be seen from the previous chapter, the utilization of more and more semiconductor heterojunctions for device fabrication has led to numerous experimental studies of heterojunctions. In spite of a few review articles, much of the information regarding the methods used for fabricating various heterojunctions lies scattered in literature. In this chapter an attempt is made to survey the reported work on various heterojunctions by tabulating the experimental details, such as the type of heterojunction, the substrate used, the method of preparation and the measured properties, in Tables 8.1 and 8.2. The first table contains information pertaining to abrupt heterojunctions fabricated by using elemental and compound semiconductors while the second table deals with abrupt heterojunctions having mixed crystals and ternary compounds as one or both constituents.
157
SEMICONDUCTOR HETEROJ UNCTION S TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS
Heteroj unction
Type Substrate
Method of preparation
Comments
Refs.
IV-IV Ge-Si
158
p-n n-p
Si
Heteroj unction formed by alloying Ge on Si in H2 atmosphere
Negative resistance and hysteresis observed Phonon spectroscopy of Q?)Ge(«)Si tunnel heterodiode
1,2 3
n-n
Si
Heterodiodes fabricated by growing Ge on Si substrate using Ge-I 2 disproportionation reaction
/-Fand photovoltaic response studied
p-n
Si
Ge grown on Si by open tube Ge-I 2 disproportionation vapour-transport process and by solution growth process
Growth parameters 6-9 discussed and I-V, C-Kand photovoltaic properties reported
n-n p-p
Si
Ge grown on Si by open tube Ge-I 2 disproportionation vapour-transport process
10 I-V reported and interface states in abrupt heteroj unction discussed
n-n n-p
Si
Ge deposited by halide reduction open-tube process on Si substrate held above the selfreducing temperature (-1100°C)
11, 12 High-speed n-n heterodiodes fabricated and switching times measured
p-n
Si
Ge grown on Si by an opentube halide-reduction process
/ - V measured
13
n-n
Si
Heterodiodes made by alloying technique of Shewchun and Wei(2)
I-V, C-Kand photoresponse reported
14
n-p p-n
Si
Heteroj unction prepared by alloying technique
Interface states studied by electrical measurements and electron-probe analysis
15
n-n
Si
Temperature-gradient alloy technique(16)
I-V, noise and admittance measurements reported
17
n-n
Si
Heteroj unction prepared by melt Electrical properregrowth process(18> ties measured
4,5
19
SURVEY OF EXPERIMENTAL WORK
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Ge-Si (cont.)
Type Substrate
Method of preparation
Comments
Refs.
I-V characteristics at different temperatures reported Suitable as fast switching diodes
20,21
Alloyed heteroj unctions prepared by melting Ge on Si at 1000°C
Uniaxial stress effects studied
22
Si
Epitaxial deposition of Ge on Si by hydrogen reduction of GeCl4 in an open-tube system
I-V Sit different 23 temperatures reported and switching properties studied 24 Electrical and optical properties reported
n-n p-p
Si
Ge pellet alloyed on Si substrate
25-27 I-V, C-Kand photo effects in n-n heterojunction studied p-p heteroj unctions showed ohmic behaviour
p-n
Si
Abrupt heterojunction prepared by alloying technique
I-V reported
28
p-n
Si
Epitaxial film of Ge deposited on Si substrate by vacuum evaporation technique (substrate temp. 650-800°C)
/ - V reported
29
n-n
Si
Heteroj unctions fabricated by epitaxial deposition of Ge on Si by vapour-growth iodide method and by alloying method (chloride reduction)
I-V, C-Kand photoelectric characteristics reported
30,31
p-p
Si
Heteroj unctions prepared by vacuum evaporation of Ge on Si
I-V and C-V meas- 32 ured at different temperatures
p-n
Si
Ge grown on Si by vapour transport interface alloying process using GeCl4
Structure and electrical properties reported
p-n
Si
p-n
Si
n-n
Heterojunction grown by alloying technique
33
159
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Ge films grown via pyrolysis of GeH 4 -H 2 mixture on thin film of Si grown on sapphire or spinel substrates
Electrical and optical properties of p~ and «-type Ge films studied
34
Refs.
Ge-Si (cont.)
—
Ge(amorphous)Si
—
Si
Amorphous Ge grown on Si by vacuum-evaporation technique
I-V and C-V reported
35
Ge-Te
n-p
Ge
Heteroj unctions fabricated by alloying Te on Ge substrate in H 2 atmosphere
p-i-n structure reported and /-Fand spectral response measured
36
Si-Te
n-p
Si
Te vacuum evaporated on Si substrate and then heated to ~ 360°C in argon atmosphere
/-Kand C-V reported
37
Ge-ZnO
n-n
Ge
ZnO films deposited by thermal decomposition of zinc propionate in vacuum
I-V characteristics measured
38
Ge-ZnS
p-n
Ge
Epitaxial film of ZnS grown on Ge by vacuum evaporation
39 Growth studies, electrical, photoelectrical and electroluminescent properties investigated
Ge-ZnSe
p-n
Ge
Epitaxial layer of ZnSe grown on Ge by close-spaced HC1 transport process
Growth rates and / - V reported
40
7-Kand switching characteristics reported
41,42
Sapphire or Spinel
IV-VI
IV-(II-VI)
160
p-n
Ge (p-n)
p-n
Ge
Epitaxial layer of ZnSe grown on /7-diffused τι-type Ge by close-spaced HO transport process
n-p-n transistor 43-5 fabricated and its electrical properties reported
Epitaxial layer of ZnSe deposited on /7-type Ge substrate by vacuum-evaporation technique
Growth, electrical and photoelectrical properties discussed
46
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
Ge-ZnSe (cont.)
p-n
Ge
ZnSe layers grown on Ge by closed-tube iodide disproportionation reaction process and by direct process
Electrical and photoelectrical properties reported
47,48
Ge-ZnTe
n-p
Ge
ZnTe films vacuum evaporated on Ge
I-V9 C-Vand photoelectrical properties reported
49
n-p
Ge
Layers of ZnTe grown on Ge by vacuum-evaporation technique
Open-circuit voltage and spectral response reported
50
n-n
Ge
Heterojunction prepared by vacuum evaporation of CdS on Ge (substrate temp. 50-300°C)
I-V studied
51
n-n
Ge
CdS films evaporated on Ge substrate maintained at ~200°C
Electrical properties and switching times investigated
52
Ge
Epitaxial growth of CdS on Ge using H 2 as transporting agent in an open-tube system
Growth studies reported
53
n-n
Ge
CdSe film vacuum deposited on Ge substrate maintained at 300°C
Photoresponse variation with bias studied Heterodiode used as null detecting pyrometer and frequency meter
54-6
n-n
Ge
CdSe film vacuum deposited on Ge (substrate temperature between 50-300°C)
Electrical properties studied
51
n-n
Ge
CdSe film deposited on Ge by vacuum-evaporation technique
/ - V reported
57
n-p
Ge
CdTe films vacuum evaporated on Ge
I-V, C-Vand photoelectrical properties reported
49
n-p
Ge
Layer of CdTe grown on Ge by vacuum-evaporation technique
Open-circuit voltage and spectral response reported
50
Ge-CdS
~ Ge-CdSe
Ge-CdTe
161
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
Si-ZnO
n-n
Si
ZnO films deposited by thermal decomposition of zinc propionate in vacuum
l-V characteristics reported
Si-ZnS
n-n p-n
Si
Epitaxial layer of ZnS deposited on Si by vacuum-evaporation technique
Growth parame58,59 ters reported and structural aspects and electrical properties discussed
Si
Epitaxial layer of ZnS grown on Si by open-tube flow method using H2 as the reactive transport agent
Growth parameters studied
60
n-n p-n
Si
ZnS deposited on Si by condensation of vapour sublimed from ZnS source in a ultrahigh-vacuum system
Epitaxial layers investigated by various techniques
61,62
n-n
Si
ZnS films deposited on Si by vacuum-evaporation technique^*0
63 Defects in epitaxial layers studied
n-n
Si
Heterojunction fabricated by a closed-system chemical-transport process
/-Fand photoresponse measured
64
p-n
Si
ZnSe films grown on Si by vacuum-evaporation technique
Open-circuit voltage and spectral response reported
50
—
Si
Epitaxial film of ZnSe deposited on Si by vacuum evaporation
Growth studies reported
61
n-p P-P
Si
Heteroj unctions prepared by vacuum evaporation of ZnTe at optimum substrate temperatures on Λ- and /?-type Si substrate
l-V measured
65
n-p P-P
Si
ZnTe layers grown on Si by vacuum evaporation technique
Open-circuit volt- 50 age and spectral response reported
Si-CdO
j n-p
Si
CdO film formed on Si by reactive sputtering of Cd
Electrical and optical properties reported
66
Si-CdS
p-n n-n
Si
Heteroj unctions prepared by vacuum evaporation of CdS on Si
Electrical and photovoltaic properties investigated
67,68
Si-ZnSe
Si-ZnTe
162
38
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
p-n
Si (P-n)
High resistivity CdS films evaporated in vacuum onto ptype Si layer obtained by B diffusion on «-type Si wafer
69 Heterojunction n-p-n triode fabricated and properties measured
p-n
Si (P-n)
CdS film evaporated onto silicon planar p+-n structure
Transistor action reported
70
p-n
Si
Films of CdS grown on Si by vacuum-evaporation technique
Open-circuit voltage and spectral response reported
50
n-n
Si
CdSe film vacuum evaporated on Si
I-V characteristics measured
57
p-n
Si
Films of CdSe grown on Si by vacuum-evaporation technique
Open-circuit voltage and spectral response reported
50
p-n
Si
CdSe film vacuum evaporated on Si
Electrical and photoelectrical properties reported
71
n-p P-P
Si
Heterojunctions prepared by vacuum evaporation of CdTe at optimum substrate temperatures on n- and p-type Si
I-V measured
65
P-P
Si
Heterojunctions made by evaporating CdTe onto vacuum cleaved Si
Opto-electronic properties reported
56
n-p P-P
Si
CdTe film deposited on Si by vacuum-evaporation technique
Open-circuit voltage and spectral response reported
50
Ge-BN
Ge
BN deposited on Ge using reaction between diborane and ammonia at 600-1000°C in H 2 or inert gas atmosphere
Application as thin 72 film varistor discussed
Ge-AlSb
Ge
AlSb flash evaporated onto Ge
Growth and lattice 73 parameters of the films reported
Si-CdS (cont.)
Si-CdSe
Si-CdTe
iv-on-v)
163
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Ge-GaP
Ge-GaAs
164
Type Substrate
Method of preparation
Comments
Refs.
n-n p-n
GaP
Ge epitaxially grown on GaP by iodide disproportionation reaction in a closed tube
Electrical, optical and photovoltaic properties studied
74-6
n-n
Ge
GaP epitaxially grown on Ge using an open-tube (Ga-PCl3-H2) transport system
Growth parameters studied and used for making GaP LEDs
77,78
n-n p-n
Ge
Epitaxial films of GaP grown on Ge using an open-tube (Ga-PCl3-H2) transport system
Interface barriers 79 and opto-electronic properties investigated
p-n
Ge
Epitaxial films of GaP deposited on Ge by HC1 vapour-transport technique
l-V characteristics reported
80
n-n
Ge
GaP grown on Ge by iodide method in an open-tube system
Electrical and photoelectrical properties reported
81
—
Ge
GaP flash evaporated onto Ge
Growth investigated 73,82
n-p
GaAs
Ge deposited epitaxially onto Tunnel diodes fabGaAs by iodide disproportionricated and l-V ation reaction(83) using openmeasured tube system
p-n n-p n-n p-p
GaAs
Ge deposited epitaxially onto GaAs by iodide process*84' 8e)
l-V, C-Kandop- 87-9 toelectrical properties investigated
p-n
GaAs
Ge grown on GaAs by iodide disproportionation reaction using closed-tube system
p-n-p optical tran- 90 sistor fabricated and opto-electrical properties studied
n-n
GaAs
Epitaxial growth of Ge onto GaAs using the open-tube iodide process
Tunnelling proper- 91 ties reported
p-n
Ge
GaAs deposited epitaxially onto Ge using closed-tube iodide process
Growth parameters studied
92
Ge
Epitaxial film of GaAs grown on Ge by vapour phase in a sealed tube containing HC1
Growth parameter as a function of temp, and HC1 pressure discussed
93
84,85
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Ge-GaAs (cont.)
Substrate
Method of preparation
GaAs
Ge epitaxially grown on GaAs by open-tube iodide process00 and by solution growth process(7)
Growth parameters 6,8 and photovoltaic properties investigated
—
Ge
GaAs flash evaporated on Ge
Growth parameters studied
73
—
Ge
GaAs deposited on Ge by flashevaporation technique
Growth parameters reported
94
p-n
Ge
Cathodic sputtering of GaAs onto Ge (threshold temp, for epitaxial growth ^550°C)
n-n
GaAs
Epitaxial growth of Ge onto GaAs by open-tube iodide process
Transient properties measured
p-n
GaAs
Ge pellet alloyed onto GaAs wafer
p-i-n structure 97 formed and I-V, C-V measured
p-n n-p n—n
GaAs
Heterojunctions formed by interface-alloy technique
I-V reported
98
p-n n-n
Ge
GaAs grown onto Ge by opentube HC1 vapour-transport technique
7- V reported
80
p-n n-p n-n
GaAs
Epitaxial deposition of Ge onto GaAs by vacuum-evaporation technique
I-V, C-Kand photoelectrical properties measured
99
p-n n-n
GaAs
Ge deposited onto GaAs by iodide process
I-V ana C-V repotted
100
p-n
GaAs
Epitaxial Ge film deposited on GaAs by vacuum evaporation
Growth parameters studied
101
p-n
Ge
Heterojunctions fabricated by close-spaced iodide process
n-p
GaAs
n-p n-n
Ge
Type p-n n-p
Comments
Refs.
95
96
p-p
p-p
Ge deposited epitaxially onto GaAs by closed-tube iodide process GaAs deposited onto Ge by vapour-transport technique
—
102
Photo-effects under reverse bias studied and uses discussed
103, 104
Electrical and structural properties of epitaxial film reported
105
165
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction | Type Substrate Ge-GaAs (cont.)
Method of preparation
Comments
Refs.
p-n
Ge
Epitaxial layer of GaAs grown by close-spaced technique without using transport agent(106)
I-Vand C-V reported
107
p-n n-p
Ge
GaAs grown onto Ge by closedtube iodide process
Growth parameters studied
108
Ge
Epitaxial GaAs films grown on Ge by water-transport closespaced technique
Growth parameters studied
109
p-n
GaAs
Heterojunctions prepared by alloying technique
/-Fand C-V reported
28
n-p
Ge
Epitaxial layer of GaAs deposited on Ge by open-tube HC1 vapour-transport method
Tunnel diode fabricated
110
—
Ge
GaAs films vacuum deposited on Ge by a three-temperaturezone technique
Film properties investigated
111
GaAs
Ge layer deposited on GaAs by liquid-phase epitaxy
Structural properties, I-V and C-V reported Tunnelling spectroscopy of p-n and n-p heterojunctions discussed
112-4
p-p
p-n n-p
166
Epitaxial layer of GaAs grown Wide band gap on the diffused p-typc surface of n-p-n transistor w-type Ge by close-spaced HC1 fabricated and transport method electrical properties reported
115
Ge
GaAs grown on Ge by closespaced HC1 vapour-transport method
Autodoping effects at the interface studied
116
Ge GaAs
(/?)Ge-(«)GaAs junctions fabricated by depositing GaAs on Ge using a close-spaced HC1 system and (/i)Ge(/?)GaAs using an I 2 system
Electrical proper- j 117 ties of heterojunction diodes and transistors discussed
Ge
GaAs films deposited onto Ge by flash-evaporation technique
Transmission and photoconductivity studied
p-n
Ge (P-n)
p-n n-n p-n n-p
118
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Ge-GaAs (cont)
Ge-GaSb
Type Substrate
Ge-InSb
Si-AIN
Refs.
GaAs
Heterodiodes fabricated by evap- Electro-optical orating Ge on GaAs studies reported
119
p-n
GaAs
Heteroj unctions fabricated by depositing Ge on GaAs by liquid epitaxy
Electro-absorption studied
120
n-p
GaAs
Epitaxial layers of Ge grown on GaAs by iodide process (open-tube)
Interface studies reported
121
p-n p-p
GaAs
Heterojunction epitaxial layers grown from eutectic solutions (liquid-phase epitaxy)
Growth mechanism discussed
122
Ge
GaSb flash evaporated on Ge
Growth parameters reported
73
Ge
InP films deposited onto Ge by vapour transport of indium and phosphorus chloride in argon atmosphere
Film structure studied
123
—
Ge
InP films deposited on Ge by flash-evaporation technique
Growth parameter reported
73
—
Ge
InAs sputtered on Ge substrate
Electrical properties of film studied
124
—
Ge
InAs flash evaporated onto Ge
Growth parameters reported
73
—
Ge
InSb flash evaporated onto Ge
Growth parameters reported
73
Si
BN deposited on Si using reaction between diborane and ammonia at 600-1000°C in H 2 or inert gas atmosphere
Application as thin film vanstor discussed
72
Si
BN films prepared by reactive sputtering in an ultra-highvacuum system on Si
Structural, optical and dielectric properties of the films studied
125
Si
BP films deposited by hydrogen reduction of the halide in He atmosphere
Growth parameters discussed
126
Si
A1N films deposited by the ammonolysis of Α10 3 ·χΝΗ 3 on Si in a temperature range of 900-1350°C
Film structure studied
127
—
Si-BN
Si-BP
Comments
p-n
Ge-InP
Ge-InAs
Method of preparation
—
167
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Si-AIN (cont.)
Si-AlP
Si-GaP
Method of preparation
Comments
Si
A1N films prepared by reactive sputtering in an ultrahigh vacuum system on Si
Structural, optical and dielectric properties of the films studied
125
Si
AIP layers epitaxially grown on Si by using an open-tube vapour-transport technique
Growth parameters and I-V characteristics reported
128
Si
AIP films grown on Si by vapour-transport method using aluminium and phosphorus gases
Film structure and growth parameters studied
129
Si
AIP grown epitaxially by vapourphase transport process using phosphorus vapour in a H 2 stream
Growth parameters discussed
130
n-p n-n P-P
GaP
Si epitaxially grown onto GaP by closed-tube disproportionation process using Te as carrier
Electrical and op- 131 to-electrical properties measured
p-n
GaP
Heterojunctions fabricated by either using solution-growth technique or pyrolytic decomposition of Si on GaP
Growth parameters and electrical properties discussed
117
Si
GaP epitaxial layers grown from eutectic solutions (liquidphase epitaxy)
Growth mechanism discussed
122
Si
Epitaxial films of GaP deposited onto Si by evaporation in an H2 atmosphere
Growth studies reported
132
Si
GaP grown on Si by thermal decomposition of a gas-phase mixture of gallium triethyl and phosphorus triethyl
Structural studies reported
133
Si
Growth parameGaP grown on i?-type Si by ters studied chemical-transport reaction using HC1 as transporting agent
Si
Electrodeposition of GaP on Si by using fluoride and chloride salts
135 Growth parameters and physical properties studied
Si
Heteroj unctions prepared by travelling solvent method using liquid Ga as molten zone
Electrical and photoelectrical properties investigated
Type Substrate
—
p-n
"
Si-GaAs
168
n-n p-n
Refs.
134
136
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
—
Si
InAs sputtered onto Si substrate
Electrical properties of films studied
124
n-n
Si
InAs films vacuum deposited on high resistivity Si by threetemperature technique
Effective electron mass and optical band gap of films determined
137
n-p
Si
Electrical properInSb films deposited onto Si by ties of the hetethe flash-evaporation technique roj unctions reported
p-n
Si
InSb films deposited by flash evaporation onto heated Si substrate in ultra-high-vacuum
/ - F a n d C-Vreported
139
Ge-In 2 0 3
n-n
Ge
Heteroj unctions prepared by chemical-growth process
Growth parameters and electrical properties reported
140, 141
Si-In 2 0 3
n-n
Si
l n 2 0 3 films grown onto Si by chemical-growth process
Electrical properties investigated
140
SiC
Heteroj unctions fabricated by depositing Ge on SiC
Electrical properties reported
142
p-n p-p
Si
Epitaxial films of SiC grown on Si by vapour-phase decomposition and H 2 reduction of SiCl4 and propane
Structural proper- 143 ties of the films reported and 7-Kand photoresponse of heterodiodes measured
n-n
SiC
Epitaxial growth of Si on SiC by pyrolysis of silane in an open-tube system
Growth parameters studied
144
p-n p-p
Si
SiC films deposited on Si by H 2 reduction and subsequent pyrolysis of chlorosilanes
/-V and C-V investigated
145
Heteroj unctions fabricated by depositing Si on SiC
Electrical properties reported
142
Si-InAs
Si-InSb
138
IV-(HI-VI)
iv-av-iv) Ge-SiC Si-SiC
12
—
169
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
IV-(IV-VI) n-p P-P
Ge
Epitaxial films of PbS deposited onto Ge from a water solution of reacting chemicals at room temperature
Photovoltaic properties reported
n-p P-P
Ge
Films of PbS grown on Ge from a water solution of reacting chemicals at room temperature
I-V characteristics 147, 148 and photovoltaic spectral response at different temperatures studied
Si-PbS
n-p
Si
Epitaxial films of PbS grown on Si by water solution of reacting chemicals at room temperature
Electrical and photovoltaic properties reported
149
Si-PbSe
n-p P-P
Si
Heteroj unctions made by depositing PbSe onto Si wafer in a high pH aqueous solution at room temperature
I-V characteristics and spectral response measurements reported
150
—
Te
Epitaxial films of Se grown on Te by vacuum evaporation technique(151)
Growth parameters, /-Fand C- V reported
152
Te
Se single-crystal films grown on Te from vapour phase
Structural properties offilmsreported Cd-Se-Te structure fabricated and I-V measured
153-5
Te
Se single-crystal films grown on Te by vacuum evaporation technique
Se film piezoelectric transducers fabricated
156, 157
Te
Single-crystal films of Se grown on Te from vapour phase
Electrical properties of films studied
158
159
Ge-PbS
146
VI-VI Se-Te
—
Se-ZnSe
p-n
Se
Heteroj unctions fabricated by evaporating Zn on Se rectifiers
7-Kand C-V reported
Se-CdS
p-n
Se
CdS films evaporated onto crystallized Se substrates
Electrical proper160 ties and effect of CdS resistivity on Se-CdS rectifiers reported
170
SURVEY OF EXPERIMENTAL WORK.
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
Se-CdS (cont.)
p-n
Al
Thin layer of Se vacuum evaporated on a Ni-plated Al substrate and heated in air. CdS film then deposited on Se film
Electrical, optical and photovoltaic properties studied
161
Se-CdSe
p-n
Glass
Heterodiode formed by deposElectrical properiting CdSe layer onto a crystalties investigated lized layer of Se
162
p-n
Plastic
Heterojunctions fabricated by vacuum evaporating CdSe onto Se layers deposited on plastic substrates
Electromechanical 163, 164 properties reported and strain sensor heterodiodes fabricated
p-n
Se
Heterojunctions formed by evaporating Cd on Se rectifiers
Electrical properties reported
165
p-n
Se
CdSe formed in Se rectifiers by reaction between Cd and Se
Electrical properties reported
166
p-n
CdS
Te alloyed onto CdS single crystal in hydrogen atmosphere
/-Fand emission spectra reported
167
Method of preparation discussed
J-Kand electroluminescence characteristics reported
168
Te-CdS
α-νΐΜπ-νΐ) Cu20-ZnO
p-n
Cu 2 0-CdS
p-n
Cu 2 0
CdS films deposited on oxidized copper plate by vacuum-evaporation technique
J-Kand photoelectric properties presented
169
Cu2S-ZnS
p-n
ZnS
Cu2S films deposited on ZnS by chemical-displacement technique
Electrical properties reported, electroluminescence observed
170
p-n
ZnS
Cu2S deposited on ZnS by vacuum-evaporation technique
Electroluminescence studied
171, 172
p-n
Glass
Cu2S films deposited in vacuum on glass and heated to 200-300°C. ZnS was then evaporated<178)
Electrical and luminescent properties reported
174
p-n
CdS
Heterodiodes fabricated by vacuum evaporation of Cu2S on CdS
I-V and electroluminescence measurements reported
175
Cu2S-CdS
12·
171
SEMICONDUCTOR HETEROJ UNCTION S TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Cu2S-CdS (cont.)
Type Substrate
Comments
Refs.
p-n
CdS
Heteroj unctions prepared by immersing CdS in hot (80°C) saturated solution of CuCl in H 2 0 having a few drops of hydroxyl amine hydrochloride and HC1
176 I-V, C-Kand photovoltaic spectral response before and after heat treatment reported
p-n
CdS
Cu2S layers deposited on CdS by chemical-displacement technique
Growth parameters, electrical and photovoltaic properties investigated
177
p-n
CdS
Cu2_JS films deposited by vacuum evaporation onto CdS substrate
Thickness effect on photoelectric properties investigated
178
p-n
CdS
Heterojunction photoconverters prepared by chemical method
Spectral response studied
179
p-n
CdS
Cu2S deposited on CdS ceramic plate by chemical displacement technique
180 I-V, C-Kand spectral response reported
p-n
Mo
Heteroj unctions prepared by chemiplating Cu2S on CdS film vacuum evaporated onto Mo foil
Spectral response reported
181
p-n
CdS
Cu2S film deposited on CdS by vacuum-evaporation technique
Photovoltaic properties studied
182, 183
p-n
Plastic, metal or glass
Various methods of preparing heterojunction discussed
Performance of CdS thin film solar cells reviewed
184
CdS film evaporated onto the substrate and then Cu evaporated and annealed at 300°C for a short duration
Electrical and photovoltaic properties reported
185
Heterojunction prepared by chemiplating Cu2S on thin evaporated film of CdS on metal substrate
Spectral response as a function of heat treatment studied
186
187
p-n
Al
p-n
172
Method of preparation
p-n
CdS
Cu2S layer formed by immersing CdS in a saturated solution of CuCl at 90°C
Structural studies of the layers reported
p-n
CdS
Thick layer of Cu2S deposited on CdS by chemical displacement technique
Diffusion of Cu 188 from Cu2S into CdS investigated
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Cu2S-CdS (cont.)
Type Substrate
Method of preparation
Comments
Refs.
p-n
CdS
Heterojunctions prepared by electroplating Cu onto CdS and heat treating the structure
Photovoltaic properties measured
p-n
CdS
Heterojunctions prepared either by vacuum evaporation or by chemical displacement technique
Photovoltaic prop- 190 erties reported
p-n
Glass
Heterojunctions prepared by vacuum-evaporation technique
Photoelectrical properties of Cu-Cu 2 S-CdSCdO structure reported
189
191
p-n
Glass
Cu2S deposited on CdS by chemical displacement technique
Photovoltaic prop- 192 erties studied
p-n
Glass
Cu2S chemiplated on thin film of CdS deposited on glass plate
/ - F a n d spectral response reported
p-n
Kapton
p-n
Glass
193
Heterojunctions fabricated by Diffusion of Cu 194 chemiplating Cu2S on CdS into CdS invesfilms and by condensation of tigated and its CdS layers at 160°C on C u ^ S effect on spectral crystals response reported Light-emitting heterojunctions prepared by chemiplating Cu2S on CdS films deposited on glass substrate
Solid-state acousto- 195 electric light scanner fabricated
Heterojunctions fabricated by vacuum evaporation of Cu2S on CdTe films
Photoelectrical properties investigated
196
Cu2S-CdTe
p-n
Cu2Se-ZnSe
p-n
ZnSe
Heterojunctions prepared by chemiplating Cu2Se on ZnSe
Electrical proper170 ties reported and electroluminescence observed
Cu2Se-CdSe
p-n
CdSe
Cu2Se films deposited by thermal sublimation in vacuum on CdSe
Spectral response reported
197
p-n
CdSe
Cu2Se chemiplated on sintered CdSe substrate
Photoelectrical properties investigated
198
p-n
Mo
I-V, C-Kand Heterojunctions fabricated by photoelectrical evaporating Cu2Se on CdSe properties refilms, prepared by vacuum ported evaporation onto Mo substrates
199, 200
173
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction Cu2Te-CdTe
Type Substrate
Method of preparation
Comments
Refs.
p-n
CdTe, Mo or glass
Heteroj unctions prepared by chemiplating Cu2Te on CdTe single crystals or CdTe films deposited on Mo or glass substrates
Electrical and photovoltaic properties measured and solar cells fabricated
201, 202
p-n
CdTe
Cu2Te flash evaporated onto CdTe single crystal or CdTe films
Electrical and photoelectric properties reported
203
p-n
Mo or glass
Heteroj unctions fabricated by chemiplating Cu2Te on CdTe films vacuum sputtered onto Mo or glass substrates
Photoelectric prop- 204 erties reported
p-n
Mo
Cu2Te deposited on CdTe films by vacuum evaporation
Electrical and photovoltaic properties measured
205
p-n
CdS-Mo
Cu2_xTe deposited on CdTe film by flash evaporation technique (CdTe film deposited on CdS-Mo substrate by vapour-phase reaction)
(/>)Cu2_xTe(w)CdTe-(/z)CdS -Mo structure fabricated and effect of heat treatment on electrical properties studied
206
n-p
Glass
Ag2S layer chemically deposited Electrical and on top of a PbS layer chemically photoconductive deposited on glass substrate measurements reported
207
ZnO-CdS
CdS
ZnO films grown by sputtering on CdS
Structural properties of the films studied
208
ZnS-CdS
ZnS
CdS layer grown on ZnS by vapour-phase transport process in an open-tube system
Structural studies reported
209
ZnS
Heteroj unctions basically fabricated by self-sealing method(2io> e x c e pt ZnS placed at the top of the growth tube
Electron microprobe studies revealed graded nature
211
(ΐ-\Ί)-(ΐν-νΐ) Ag2S-PbS
(II-VIHII-VI)
"
174
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
CdS ZnS
Epitaxial layers of ZnS on CdS and CdS on ZnS grown by vapour-transport process using N 2 as transport gas (forming gas or argon also used)
Growth parame212 ters reported and growth mechanism discussed
CdS
Heteroj unctions prepared by vapour-phase transport method
ZnS-CdS graded heteroj unctions fabricated and luminescence studies reported
Glass
Coevaporation of CdS and ZnS from two different boats onto glass substrate
CdS-ZnS rectifiers 214 fabricated (rectification properties up to 500°C)
n-p
ZnSe
ZnTe epitaxially grown on ZnSe by vapour-deposition method in a sealed tube
Interface studies, electrical and electroluminescence properties reported
215, 216
n-p
ZnSe
ZnTe films epitaxially grown on ZnSe using a mixture of H 2 and HC1 gases as carrier gas
I-V, C-Kand temperature dependence of luminescence reported
217
n-p
ZnTe
Heteroj unctions prepared by vacuum evaporation of ZnSe on ZnTe
Photoelectrical and 218, 219 luminescent properties measured
NaCl
Single crystal films of ZnSe and CdSe grown to form heterojunction by sputtering onto NaCl substrate
Structural properties and growth parameters discussed
220
—
Glass
Vacuum deposition of a graded CdSe-ZnSe film between two Au electrodes
/ - V characteristics measured
221
ZnSe-CdTe
n-p
CdTe
Heteroj unctions fabricated by vacuum evaporation of ZnSe on CdTe
Photoelectrical and 218 luminescent properties measured
ZnTe-CdS
p-n
CdS
Epitaxial layers of ZnTe grown onto CdS substrate by opentube vapour-transport method
Structural proper- 222 ties of the grown films studied
p-n
ZnTe
Heteroj unctions prepared by vapour deposition of CdS on ZnTe
223 /-Kand growth features reported
ZnS-CdS (cont.)
ZnSe-ZnTe
ZnSe-CdSe
213
175
SEMICONDUCTOR HETEROJUNCTION S TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
ZnTe-CdS (cont.)
p-n
CdS ZnTe
Electrical properHeteroj unctions prepared by ties reported vacuum evaporation of ZnTe on CdS or CdS on ZnTe in H 2 atmosphere
ZnTe-CdSe
p-n
ZnTe
Epitaxial films of CdSe grown by open-tube vapour-transport method or by vacuum evaporation technique
I-V, photovoltaic properties reported and electroluminescent diodes fabricated
225, 226
p-n
CdSe ZnTe
Epitaxial films of ZnTe on CdSe single crystals or CdSe on ZnTe single crystals grown by vapour-phase reaction using argon as carrier gas
Electrical and photoelectric properties reported
227
p-n
ZnTe
Heteroj unctions prepared by vacuum evaporation of CdSe on ZnTe or by transport of CdSe in Ar atmosphere
Photoelectrical and 218,228 luminescent properties measured
n-n
CdS CdSe
Heteroj unctions fabricated by vacuum evaporation of CdSe on CdS single-crystal wafers or CdS on CdSe singlecrystal wafers
Photovoltaic properties measured
229
n-n
CdSe or glass
Thin-film heterostructure pre- . pared by flash evaporation of CdS and CdSe on glass substrate or by vacuum evaporation of CdS on CdSe singlecrystal substrate
Graded CdS-CdSe heterojunctions also discussed
230, 231
n-n
Mica
Multilayer single-crystal systems (CdS^-CCdSe)^ on cleaved mica surface fabricated by sublimation
Photoelectric properties of films reported
232
CdS
Epitaxial films of CdTe deposited on CdS by HC1 vapourtransport technique
Growth parameters and structural properties of grown films investigated
233, 234
Glass
Thin film heterostructure prepared by successive deposition of Sn0 2 , CdS and CdTe on glass substrate in vacuum
Photodiodes fabricated and electrical and photoelectrical properties reported
235, 236
CdS-CdSe
CdS-CdTe
n-p
176
224
SURVEY OF EXPERIMENTAL W O R K TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS
Heterojunction CdS-CdTe (cont.)
Type Substrate
—
Glass
n-p
(cont.)
Method of preparation
Comments
Refs.
Au-CdS-CdTe-Te heterodiodes fabricated by vacuum evaporation technique
I-V, C-Vand photoresponse reported
237, 238
Single-crystal CdS-CdTe heterojunctions prepared by the method of double recrystallization
Photoelectric prop- 239 erties reported
CdS-HgS
CdS
Epitaxial layer of HgS grown on CdS by vapour-transport process using N 2 as transporting gas
Growth parameters reported
212
CdTe-HgTe
CdTe
HgTe grown on CdTe by a method based on evaporation from source and diffusion onto substrate (source and substrate closely spaced at same temperature)
Growth parameters and photoelectric properties studied
240
(Il-VI)-(ni-V) ZnS-GaP
—
GaP
Epitaxial layer of ZnS grown on GaP by vapour-transport reaction in a closed system
Growth parameters studied
241
ZnS-GaAs
n-p
GaAs
ZnS deposited on GaAs by the method discussed in ref. 242
Spectral response and luminescent properties reported
243
ZnS
InSb films grown on ZnS by vacuum evaporation technique
Optical properties 244 of films reported
n-p
GaAs
Epitaxial layer of ZnSe grown on GaAs by close-spaced HC1 transport process
Growth studies and electrical properties reported; n-p-n transistor also fabricated
40, 45
n-p n-n
GaAs
Heterojunctions prepared by growing ZnSe on GaAs using chemical transport process
Growth parameters and electrical properties reported
245
n-p
GaAs
Epitaxial films of ZnSe grown on GaAs by open-tube HBr vapour-transport process
246, 247 Growth parameters, I-V and luminescent properties reported
GaAs
ZnSe grown on semi-insulating GaAs by vapour-transport process using H 2 and HC1 as transporting gases
Growth parameters studied
ZnS-InSb ZnSe-GaAs
—
248
177
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction ZnTe-GaSb
ZnTe-InAs
CdS-GaP
Type Substrate
CdTe-GaAs
ZnTe
Heterojunctions prepared by interface-alloy technique
/ - F a n d photo249 response reported
p-p
ZnTe
GaSb alloyed onto ZnTe in H 2 atmosphere
Existence of graded band-gap region reported
250
p-n
ZnTe
Heteroj unctions prepared by interface-alloy technique
p-i-n structure observed
251
p-n
ZnTe
Heteroj unctions prepared by interface-alloy technique
I-V, C-Fandluminescent properties measured p-i-n structure observed
251
p-n
InAs
ZnTe grown on InAs by vapourtransport process in a closed system
Structural properties reported
252
n-n
GaP
CdS films grown on GaP by open-tube vapour-transport technique
Structural properties investigated
253
GaP
CdS films deposited on GaP by HC1 vapour-transport technique
Growth parameters and structural properties reported
233, 234
GaAs
CdS epitaxial films grown on GaAs by an H2-HC1 vapour phase chemical reaction technique or H 2 chemical reaction technique
Growth parameters and structural properties reported
234
CdS
InSb films deposited on CdS by three-temperature process
Optical properties of films studied
254
GaAs
Epitaxial layers of CdTe grown on GaAs by vapour-transport reaction in a sealed tube
Growth parameters and I-V reported
255
GaAs
Epitaxial films of CdTe grown on GaAs by vapour-transport technique using H 2 as carrier gas
Structural properties investigated
256
CdTe
Heteroj unctions prepared by interface-alloy technique
Electrical and photoelectrical properties studied
257
GaS platelets covered with ZnS grown by crystallization method from metallic melts
Structural properties studied
258
— p-n
CdTe-InSb
p-n
(II-VI)-(IH-VI) ZnS-GaS
n-p
178
Refs.
P-P p-n
CdS-GaAs
CdS-InSb
Comments
Method of preparation
1
SURVEY OF EXPERIMENTAL WORK
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
SiC
Heteroj unctions prepared by vari- I-V characteristics ous methods reported
259
n-p
SiC
CdS layer grown of singlecrystal SiC (method not given)
Electrical, photoelectrical and luminescent properties studied
260
CdS-PbS
n-p
CdS
Epitaxial films of PbS deposited onto CdS from a water solution of reacting chemical at room temperature
Electrical and photovoltaic properties measured
261
CdSe-PbS
n-p
CdSe
Films of PbS deposited on CdS by chemical deposition technique
I-V, C-Fand 262 spectral response reported
CdTe
Crystalline growth of GeTe on CdTe by evaporation-diffusion under isothermal conditions
Growth parameters reported
240
CdS-SiC
(π-νΐΜΐν-νΐ)
CdTe-GeTe
HgTe-GeTe
—
GeTe
Crystalline growth of HgTe on GeTe by evaporation-diffusion under isothermal conditions
Growth parameters reported
240
HgTe-PbTe
—
PbTe
Crystalline growth of HgTe on PbTe by evaporation-diffusion under isothermal conditions
Growth parameters reported
240
CdS
As2Se3 films evaporated onto CdS single-crystal substrates
Electrical and photoelectrical properties studied
263
GaAs
AIP films grown on GaAs by using an open-tube vapourtransport technique
Structural properties and growth parameters reported
128
GaAs
Epitaxial layer of AlAs grown on GaAs by an open-tube vapour-transport technique in which Al is transported in presence of As vapour in a stream of H2
Physical properties of grown layer reported
130
(II-VI)-(V-VI) CdS-As2Se3
n-p
(m-v)-(iii-v) AlP-GaAs
AlAs-GaAs
n-n
179
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
—
GaAs
Heterojunctions formed by alloying Al on GaAs in H 2 atmosphere
Microscopic observations reported
264
n-p n-n
GaAs
Heterojunction prepared by alloying Al on GaAs
Electrical and photoelectrical properties measured
265
GaAs
AlAs epitaxially grown on GaAs by an open-tube vapourtransport technique using aluminium chloride and arsine
Structural and electrical properties of grown layers investigated
266
AlSb-GaAs
GaAs
AlSb epitaxial films deposited on GaAs by flash evaporation technique
Growth parameters reported
73
GaN-GaAs
GaAs
Single-crystal GaN grown on GaAs by heating the intermediate oxide phase in ammonia or ammonia/nitrogen mixture
Structural perfections of GaN layers studied
267
p-n n-p n-n
GaP
Epitaxial layers of GaAs grown on GaP in an open-tube vapour-transport system using HC1 as transporting agent
I-V, C-Kand photoresponse studied
268
n-n
GaP
GaAs grown on single-crystal platelets of GaP using an open-tube Ga-AsCl 3 vapourtransport system
7- V characteristics at various temperatures measured
269
n-p
GaAs
Epitaxial growth of GaP on GaAs by vapour-phase technique(270) and by solution growth technique(271)
7-Kand C-V measured
80
p-n
GaAs
GaP epitaxially grown on GaAs by closed-tube vapour-transport technique
Growth parameters, electrical and electrophotoluminescence properties investigated
255, 272-4
p-n
GaAs
GaP grown on GaAs by closedtube vapour-transport technique using cadmium chloride as transporting and doping agent
Photoelectric prop- 275 erties measured Heterophotocell efficiency of -8%
n-p
GaAs
Epitaxial layer of GaP grown by close-spaced epitaxial process
Photovoltaic spectral response measured
AlAs-GaAs (cont.)
GaP-GaAs
180
276
SURVEY OF EXPERIMENTAL WORK TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS
Heterpjunction
Type Substrate
GaP-GaAs (cont.)
n-n
n-n n-p
— p-n
Method of preparation
1
(cont.)
Comments
Refs.
GaAs
Epitaxial film of GaP grown on GaAs by vapour phase in a sealed tube containing HCl
Growth parameters 93 as a function of temperature and HCl pressure discussed
GaAs
Epitaxial deposition of GaP on GaAs by chloride-vapourtransport system having an arrangement to cool substrate
Used for bulk growth of GaP
GaAs
Vapour growth of GaP on GaAs by a PC13 chemical transport method
278 Electrical properties of GaP films reported
GaAs
Epitaxial films of GaP grown on GaAs by open-tube PC13 vapour-transport method
GaAs
S-doped GaP crystals grown on GaAs by PC13 vapour-transport method
Electrical and optical properties of the films measured
279
GaAs
Epitaxial platelets of high resistivity GaP grown by vapourtransport method using HCl and phosphine
Growth parameters studied
280
GaAs
GaP grown on GaAs substrate using phosphine and HC1(281)
Growth parameters reported
282
GaAs
GaP layers grown on GaAs by vapour-transport method (Ga-PCl 3 -H 2 )
277
79
283
" 73
GaAs
Epitaxial films of GaP grown on GaAs by flash-evaporation technique
Growth parameters studied
GaAs
Zn-doped GaP grown on GaAs by water-vapour transport method
284 Growth rates, electrical properties and photolumines- j cence studied
n-n
GaAs
Epitaxial GaP grown on GaAs by open-tube Ga-PCl 3 -H 2 system
285 Electrical properties of the grown layers studied
n-n
GaAs
Epitaxial layers of GaP grown on GaAs by open-tube wet hydrogen process
Electrical properties of grown layers studied
286
181
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Method of preparation
Comments
Refs.
GaP-GaAs (cont.)
n-n p-n
GaAs
GaP epitaxially grown on GaP by close-spaced water transport process(287)
Growth conditions discussed
GaAs-GaSb
p-n n-p n-n p-p
GaAs
Heterojunctions prepared by interface-alloy technique
Growth parame98, 289 ters, electrical and opto-electrical properties studied
—
GaAs
GaSb grown on GaAs by flashevaporation technique
Growth parameters studied
73
GaAs
Epitaxial growth of GaSb on GaAs using Ga-SbH 3 -HCl in an open-tube system
Crystalline nature of grown layer studied
290
GaAs
Heterojunctions fabricated by closed-tube vapour-transport technique
Electrical properties reported (I-V, C-V)
291
GaAs
InP grown on GaAs by using PCI 3 as transporting agent in an open-tube system
Growth parameters studied
292
GaAs
InP films grown on GaAs by the sandwich method of vapour deposition in an H 2 0 vapour atmosphere using indium oxide and phosphorus
Structural studies reported
293
GaAs
InP films deposited on GaAs by flash-evaporation technique
Growth parameters studied
73
GaAs
InP grown on GaAs by opentube vapour-transport system using PH 8 , HC1, In and H 2
Growth parameters reported
294
GaAs
InAs epitaxially grown on GaAs by closed-tube vapour-transport technique
Growth parameters studied
108
GaAs
InAs grown on GaAs by open295 Electrical propertube halide transport technique ties of epitaxial layers investigated
GaAs
Epitaxial layers of InAs grown on GaAs by halogen-vapour transport process using opentube and closed-tube systems
Electroluminescent diodes fabricated GaAs-InAs mixed crystals also grown on GaAs
GaAs
Epitaxial films of InAs grown on GaAs by open-tube vapour-transport technique
297 Electrical and galvanomagnetic properties of the films studied
" GaAs-InP
n-n n-p
—
GaAs-InAs
n-n p-n
n-p
182
288
296
SURVEY OF EXPERIMENTAL WORK
TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Heterojunction
Type Substrate
Structural and electrical properties of the films investigated
298
GaAs
InAs sputtered onto GaAs substrates
Electrical properties of the films measured
124
GaAs
Epitaxial films of InAs obtained by vacuum evaporation onto GaAs
Growth parameters studied
299
—
GaAs
InAs films deposited on GaAs by flash-evaporation technique
Growth parameters reported
73
—
GaAs
Sandwich method used to grow InAs films on GaAs
Structural properties reported
300
n-n p-p
GaAs
Heterojunctions fabricated by interface-alloy technique
I-V, C-Fand photoresponse measured
301,302
~
GaAs
Epitaxial films of InSb grown on GaAs by flash-evaporation technique
Growth parameters reported
73
GaAs
InSb films prepared by vacuumevaporation technique
Electrical properties of films measured
299
n-p
InAs
Heterojunctions prepared by interface-alloy technique
Electrical and 289, 303 electro-optical properties of the heterojunctions studied
—
InAs
Crystalline growth of GaSb on InAs by evaporation-diffusion under isothermal conditions
Growth parameters reported
240
GaSb
Heterojunctions prepared by crystallization from melt of InSb on GaSb
Electrical properties of the heterojunctions reported
304
InAs
Epitaxial layer of InP grown on InAs by open-tube vapourtransport technique using PH3 and H 2
Growth parameters reported
305
GaAs
In 2 0 3 films deposited on GaAs by chemical-growth process
I-V characteristics reported
140
" GaSb-InAs
GaSb-InSb
n-p
InP-InAs
(m-v)-(in-vi) GaAs-In2Os
Refs.
Epitaxial films of InAs deposited on GaAs by vacuum evaporation using the threetemperature method
"
GaAs-InSb
Comments
GaAs
GaAs-InAs (cont.)
/
Method of preparation
n-n
183
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.1. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING ELEMENTAL AND COMPOUND SEMICONDUCTORS (cont.)
Type Substrate
Refs.
Method of preparation
Comments
SiC
Epitaxial films of BP deposited on SiC by vapour-phase reaction technique
Rectifying properties observed
306
SiC
BP grown on SiC by thermal decomposition of diboranephosphine mixtures in H 2 atmosphere and by thermal reduction of BBr 3 -PCl 3 in H 2 atmosphere
Electrical properties of grown layers studied
307
AIN-SiC
SiC
Epitaxial growth of A1N on SiC by ammonolysis of aluminium trichloride in an open-tube system
Growth parameters reported
308
GaN-SiC
SiC
GaN thin films deposited on /7-type SiC by reacting GaCl 3 and NH 3 in an open-tube system using N 2 as carrier gas
Structural properties of the films measured
267
Heterojunction
(m-v)-(iv-iv) BP-SiC
p-n
(m-V)-(IV-VI) GaAs-GeTe
n-p
GaAs
Heteroj unctions prepared by vacuum evaporation of GeTe on GaAs
I-V characteristics of the tunnel heteroj unctions at low temperatures reported
309
GaAs-SnTe
n-p
GaAs
Heteroj unctions prepared by vacuum evaporation of SnTe on GaAs
/ - V characteristics of the tunnel heteroj unctions at low temperatures reported
309
GaAs-PbS
n-p
GaAs
Epitaxial films of PbS deposited on GaAs by water solution of reacting chemical at room temperature
Electrical properties and photovoltaic spectral response measured
310
GaSb-PbS
n-p p-p
GaSb
Epitaxial films of PbS deposited on GaSb by water solution of reacting chemicals at room temperature
311 Electrical properties and photovoltaic spectral response reported
PbS-PbSe
NaCl
PbS film vacuum evaporated onto NaCl followed by PbSe film evaporation
Misfit dislocations studied
312
GeTe-PbTe
PbTe
Crystalline growth of GeTe on PbTe by evaporation-diffusion under isothermal conditions
Growth parameters reported
240
"
184
SURVEY OF EXPERIMENTAL WORK
TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS
Substrate
Method of preparation
Comments
Refs.
Ge-Ge^ii-*
Ge
Electrical properties of (p)Ge-(n)GexSh-x heterodiodes reported
117
Si-GeJtSi1_x
Si
Epitaxial layers of Ge^Si^^ grown on Ge by simultaneous decomposition of the hydrides of Ge and Si Heterojunctions prepared by vapour transport-interface alloying process using GeCl 4 -SiHCl 3 -H 2 system Ge z Si!_ x epitaxial layers grown on Si by the method given in ref. 33 Heterojunctions prepared by iodide-vapour transport-interface alloying process Heterojunctions prepared by halide-vapour transportinterface alloying process Heterojunctions prepared by successive deposition of single-crystal thin films of Ge and (Galn)As onto CaF 2 substrates Ga(AsP) layers grown on Ge by open-tube vapour-transport technique
Structural and electrical properties of the heterojunctions reported
33
Surface properties of the grown layers studied
313
/-Fand
31
Heterojunction
Si Si Si Ge-GaJnx.^As
CaF 2
Ge-GaASaPi-s
Ge
Ga(AsP) GaP-Al.Gai.^P
GaP GaP
GaP-GaJn^P
GaP GaP
GaP
GaP
13
Ge layers grown on Ga(AsP) by open-tube iodide disproportionation process Heterojunctions prepared by liquid-phase epitaxy Heterojunctions prepared by alloying Al on GaP Single crystal layers of (Galn)P grown on GaP by liquid phase epitaxy (Galn)P epitaxial layers grown on GaP by open-tube vapour transport technique using Ga-In-HCl-PH 3 -H 2 system (Galn)P grown on GaP by open-tube vapour-transport technique using Ga-In-PCl 3 -H 2 system (Galn)P layers grown on GaP by solution-growth technique
C-Vreported
Interface structure studied
11, 12
Misfit dislocations at the interface studied
314
Structural, electrical and photoluminescence properties of the grown layers reported Electrical properties measured
315
Growth conditions reported I- V characteristics and electroluminescence properties reported Lattice constant as a function of x studied
317
316
318 319 294
Growth conditions discussed
320
Structural and optical properties of the grown layers reported
321
185
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)
Heterojunction
Substrate
GaP-GaAs x P!_ x 1 GaP GaP GaP
Method of preparation
Comments
Refs.
Ga(AsP) grown on GaP by liquid-phase epitaxy
Growth parameters stud- j ied
322
Ga(AsP) grown on GaP by molecular beam deposition
Growth parameters studied
323
Electrical properties of the grown layers measured
324
1 Ga(AsP) grown on GaP by closed-tube iodine-vapour transport technique
GaP-InAsJP!_ x
GaP
In(AsP) grown on GaP by open- Growth parameters and electrical properties of tube vapour-transport techthe grown alloys renique using In-HCl-AsH 3 ported PH 3 -H 2 system
GaAs-AlÄGai_aAs
GaAs
Heteroj unctions prepared by liquid-phase epitaxy using sliding mechanism
GaAs
Four layer heterostructures grown onto «-type GaAs substrates using a multilayer solution-growth tipping apparatus
GaAs
Multilayer heterostructures con- Injection laser diodes hav- 338-43 sisting of GaAs and AlAsing different heteroGaAs solid solutions prepared structures fabricated by liquid-phase epitaxy for cw operation at room temperature
GaAs
Heterostructures prepared by liquid-phase epitaxy(344)
Injection heterolaser operating at 163°C reported
345
GaAs
Heteroj unctions prepared by growing (AlGa)As on GaAs by liquid-phase epitaxy
Close-confinement (p) Al^Gax _x As-(p)GaAs -(«)GaAs lasers fabricated
346
GaAs
Heterodiodes fabricated by Red and infrared light347 sequential growth of n- and emitting laser diodes /j-type (AlGa)As layers onto having close-confineGaAs substrate by liquid ment structure fabriphase epitaxy cated Multilayer heterostructures con- Injection lasers with large 348, 349 sisting of GaAs and (AlGa)As optical cavity fabricated prepared by liquid-phase epiand various advantages taxy of such structures discussed Heterostructures fabricated by (AlGa)As injection lasers 350, 351 sequential growth of (AlGa)As fabricated layers with different conductivities and compositions onto GaAs substrate by liquid phase epitaxy |
GaAs
GaAs
186
325
0?) AlsGax _ x As-(»GaAs(«)GaAs heterostructure injection lasers 1 fabricated
326-9
Double heterojunction injection lasers fabricated
330-7
SURVEY OF EXPERIMENTAL W O R K TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)
Comments
Heterojunction
Substrate
Method of preparation
GaAs-AlxGai _xAs (cont.)
GaAs
(AlGa)As layers grown on GaAs substrate by isothermal solutions-mixing method
Double heterojunction injection lasers fabricated
352
GaAs
(AlGa)As layers grown on GaAs by liquid-phase epitaxy
Q?) Ala-Gax _ xAs-(/?)GaAs(w)GaAs laser diodes fabricated and gain and loss processes discussed
353
GaAs
Heterojunction prepared by liquid-phase epitaxial process similar to ref. 326
Single heterojunction laser diodes fabricated and gain and loss factors studied
354
GaAs
Spontaneous visible radiation sources based on AlAs-GaAs solid solutions prepared by liquid-phase epitaxy
(«JGaAs-OOAl-cGax _ aAs(/?)Al2Ga!_zAs and («)GaA-(«)AlxGa! _*As -(/OAlyGa^yAs(p)AlzGa!_2As heterostructures prepared and I-V and electroluminescence properties measured
355
GaAs
Epitaxial layers of/?-type (AlGa)As grown on «-type GaAs by liquid-phase epi-
Photoelectric properties measured and coordinate-sensitive photocell fabricated
356, 357
Multilayer heterodiodes fabricated by liquid-phase epi-
Electrical, transient and 358, 359 electroluminescence properties of (p)GaAs(Si)GaAs-(w)AlxGa1_xAs and (p)AlxGa!_ÄAs(SOGaAs-MAlsGa^sAs S-diodes studied
GaAs
(p)AlitGai_xAs-(w)GaAs heteroj unctions prepared by liquidphase epitaxy
I-V, C-Fand injection luminescence studied
360
GaAs
p-n-p-n structure based on GaAs and AlAs-GaAs solid solutions prepared by liquidphase epitaxy
Fast switching structures fabricated and I-V characteristics reported
361
GaAs
Epitaxial growth of (AlGa)As films from molten solutions of As in Ga with admixture of Al
Electroluminescence under avalanche breakdown conditions
362
GaAs
Epitaxial films of /?-type (AlGa)As grown on w-type GaAs substrates by liquidphase epitaxy
Solar-energy photoconverters fabricated
363
taxy(344)
GaAs
taxy(344)
13*
Refs.
187
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)
Method of preparation
Comments
Refs.
Heterostructures fabricated by liquid-phase epitaxy
Electrical properties of the high-voltage p-n and p-i-n heterodiodes reported
364, 365
GaAs
(AlGa)As grown on GaAs by halide vapour disproportionation reaction in a closedtube
Optical and electrical properties measured
366
GaAs
Heavily doped (AlGa)As alloys grown on GaAs by liquidphase epitaxy
Electrical properties and influence of the growth conditions on the emission spectra n-p and p-n heterodiodes investigated
367
GaAs
(AlGa)As epitaxial layers grown on GaAs by liquid-phase epitaxy
Visible light emitting diodes fabricated
368
GaAs
Multilayer structures with hetero- Spontaneous light-emisjunctions fabricated by liquidsion sources fabricated phase epitaxy
369
GaAs
iMype GaAs grown on Al^Gai-a· Optoelectronic cold cathode [(/?)GaAsAs electroluminescent (p-n) (»Al^Gai-sAs-Oi) diode. The multilayer strucAlxGax _a.As-(«)GaAs] tures prepared by liquidmade and overall efphase epitaxy ficiency measured
370, 371
GaAs-GaJn^P
GaAs
(GaTn)P grown on GaAs by open-tube vapour-transport technique using Ga-In-PCl 3 -H 2 system
Growth conditions discussed
GaAs-Ga-Jiix-sAs
GaAs
(Galn)As layers grown on GaAs by open-tube vapour-transport technique
Optoelectronic properties of p-n and n-p heterojunctions measured
372, 373
GaAs
Heteroj unctions prepared by recrystallization of (Galn)As layers from Bi/InAs/Mn alloy onto GaAs substrates(374)
Electrical and optical properties of the heterojunctions measured
375
GaAs
QOGaAs-OoGa-Jni-aAs hetero- 1 Photosensitivity spectra junctions prepared by liquidand electroluminescence phase epitaxy(376) of heterodiodes investigated
377
GaAs
Heteroj unctions prepared by liquid-phase epitaxy
317
Heterojunction
Substrate
GaAs-AlxGai_xAs (cont.)
GaAs
188
Growth conditions reported
320
SURVEY OF EXPERIMENTAL W O R K
TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)
Heterojunction
Substrate
Method of preparation
Comments
Refs.
GaAs-GaJni _sAs (cont.)
GaAs
(Galn)As alloys deposited on GaAs by open-tube vapourtransport technique using Ga-In-HCl-AsH 3 -H 2 system
Use of (Galn)As alloys for infrared photocathodes discussed
294
GaAs
(Galn)As grown on GaAs using open-tube vapour-transport technique
Physical and electrical properties of the grown layers reported
378
GaAs
(Galn)As grown on GaAs by liquid-phase epitaxy
Growth conditions discussed
379
GaAs
Ga(AsP) grown on GaAs by pyrolysis of trimethyl gallium, AsH3, PH3 in hydrogen atmosphere
Growth parameters reported
380
GaAs
Ga(AsP) grown on GaAs by open-tube vapour-transport technique
(w)GaAs-(/?)GaAs(p)GaAsxP1_x heterostructure injection lasers fabricated
381
GaAs
Ga(AsP) grown on GaAs by molecular beam deposition
Growth parameters studied
323
GaAs
Heterojunctions fabricated by open-tube vapour-transport technique
Optoelectronic properties of 0)GaAs-(7i)GaAsÄPi_s studied
372
GaAs
Ga(AsP) grown on GaAs by closed-tube iodine-vapour transport technique
Electrical properties of the grown layers measured
324
GaAs
(«)GaAszPi _ a.-(«)GaAs heterojunctions prepared by opentube vapour-transport technique
Photoresponse studied
382
GaAs
Ga(AsP) grown on GaAs by liquid-phase epitaxy
Growth conditions reported
317
GaAs
Ga(AsP) epitaxial layers grown on GaAs by open-tube vapour-transport technique*281*
Dislocation morphology and stress at the interface studied
GaAs
Epitaxial films of Ga(AsP) grown on GaAs by open-tube vapour-transport technique
Diffusion and drift of zinc ions in heterojunctions investigated
385
GaAs
Ga(AsP) layers deposited on GaAs by vapour-phase epitaxy
(/OGaAs-OOGaAsJPi.* photodiodes prepared and spectral response measured
386
Performance of such a diode as photomixer studied
387
GaAs-GaASsPi-s
383, 384
I
189
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETERO JUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)
Heteroj unction
Substrate
Method of preparation
Comments
Refs.
GaAs-GaSbxAsi_x
GaAs
Ga(SbAs) epitaxial films grown on GaAs by liquid-phase epitaxy
Electrical and optical properties of the films measured
388
GaAs
Ga(SbAs) alloys grown on GaAs by open-tube vapourtransport technique using Ga-HCl-AsH 3 -SbH 3 -H 2 system
Electrical properties of the grown layers reported
GaAs
Heteroj untions prepared by recrystallization of Ga(SbAs) alloys from Bi/GaSb alloy onto GaAs substrates
Electrical properties of the grown layers studied
374
GaAs
Ga(SbAs) grown on GaAs by liquid-phase epitaxy
Use of Ga(SbAs) as a long-wavelength threshold photoemitter discussed
389
GaAs
In(AsP) grown on GaAs by open-tube vapour-transport technique using In-HCl-AsH 3 -PH 3 -H 2 system
Growth parameters and electrical properties of the grown alloys reported
325, 390
GaAs
In(AsP) grown on GaAs by open-tube vapour-transport technique using In-HCl-AsH 3 -PH 3 -H 2 system
Electrical properties of the grown alloys studied
305
GaAs-InSbxAs! _ x
GaAs
In(SbAs) films grown on GaAs by flash evaporation of mixed InAs and InSb powders
Electrical and optical properties of the grown films investigated
391
GaSb-Al^Gai-sSb
GaSb
(AlGa)Sb grown on GaSb by liquid-phase epitaxy
Growth conditions reported
317
GaSb-GaJnx.^Sb
GaSb
(Galn)Sb-GaSb heterocrystals obtained by means of pulling, displacement of melting zone and alloying
Structural properties studied
392
InP
Single-crystal layers of (Galn)P grown on InP by liquid-phase epitaxy
Lattice constant as a function of x studied
319
InP
(Galn)P grown on InP by opentube vapour-transport technique using Ga-In-PCl3-H2 system
Growth conditions studied
320
InP
(Galn)P epitaxially grown on InP by open-tube vapourtransport technique using Ga-In-HCl-PH 3 -H 2 system
GaAs-InASaPx-s
InP-GaJnx.^
190
290, 294
294
SURVEY OF EXPERIMENTAL WORK
TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING ABRUPT-HETEROJUNCTIONS USING MIXED CRYSTALS AND TERNARY COMPOUNDS AS ONE OR BOTH CONSTITUENTS (cont.)
Heterojunction
Substrate
Method of preparation
Comments
Refs.
InP
In(AsP) epitaxially grown on InP by open-tube vapourtransport technique using In-HCl-AsH 3 -PH 3 -H 2 system
Electrical properties of the grown alloys discussed
InP
In(AsP) grown on InP by liquid-phase epitaxy
Growth and characteriza- 393, 394 tion of In(AsP) reported
InAs-GaJnx.^As
InAs
(Galn)As alloys grown on InAs by open-tube vapour-transport technique using Ga-In-HCl-AsH 3 -H 2 system
Electrical properties of the grown alloys mentioned
294
InAs-GaJnx.aP
InAs
(Galn)P grown on InAs by open-tube vapour-transport technique using Ga-In-PCl 3 H 2 system
Growth conditions discussed
320
InAs-InASaPx-x
InAs
In(AsP) deposited on InAs by open-tube vapour-transport technique using In-HClAsH 3 -PH 3 -H 2 system
Structural and electrical properties of the grown alloys investigated
305
InSb-GaJnLsSb
InSb
(Galn)Sb grown on InSb by temperature-gradient zone melting technique
Growth parameters and structural properties of the grown solid solutions studies
395
Ge-CdaHg!_xTe
Ge
Films of (CdHg)Te deposited on Optical properties of the Ge by cathodic sputtering films reported and subsequent annealing
396
Photoelectrical and luminescent properties of the heteroj unctions studied
218
InP-InAsJPi_x
ZnSe-ZnsCdi.sTe ZnxCdx_x Heterojunctions prepared by vacuum evaporation of ZnSe Te onto Zn0.6Cd0.4Te substrates ZnSe-ZnSe^Te!..,
ZnTe-CdS^ei.»
294
ZnSe
Zn(SeTe) films deposited on ZnSe by flash evaporation technique
(/i)ZnSe-(/)ZnSeo.4Teo.6(/?)ZnTe heterostructure fabricated and electroluminescent properties studied
397
ZnSe
Zn(SeTe) epitaxially grown on ZnSe by vapour-deposition method in a sealed tube
Growth parameters reported
398
ZnTe
Cd(SSe) grown on ZnTe in an open-tube system with H 2 as the transporting agent
0?)ZnTe-(n)CdSxSe1 _X heterodiodes fabricated and photovoltaic and luminescent properties measured
399,400
191
SEMICONDUCTOR HETEROJUNCTIONS TABLE 8.2. METHODS USED BY VARIOUS WORKERS FOR FABRICATING
ABRUPT-HETEROJUNCTIONS
USING M I X E D CRYSTALS AND TERNARY COMPOUNDS AS O N E OR BOTH CONSTITUENTS
Heterojunction
Substrate
Method of preparation
(cont.)
Comments
Refs.
Ge-ZnGeP 2
ZnGeP2
Ge deposited on ZnGeP2 by open-tube vapour-transport technique using iodine as transporting agent
Structural properties studied
401,406 407
Ge-ZnSiP2
ZnSiP2
Ge deposited on ZnSiP2 by open-tube vapour-transport technique using iodine as transporting agent
(/?)Ge-(«)ZnSiP2 heterodiodes fabricated and / - V measured
401,406 407
Ge-ZnSiAs2
ZnSiAs2
Ge deposited by iodine vapour transport
—
406, 407
Ge-CdSiP2
CdSiP2
Deposition from tin solution
—
408
Ge-CdSnP2
CdSnP2
Deposition from tin solution
—
408
Si-ZnGeP2
ZnGeP 2
Si deposited on ZnGeP 2 by hydrogen reduction of SiHCl3
Growth parameters reported
401
Si-ZnSiP2
ZnSiP2
Si deposited on ZnSiP2 by hydrogen reduction of SiHCl3
401, 402
Si
By temperature gradient zone melting
(>i)Si-00ZnSiP2 heterodiodes fabricated and electrical properties measured n-n heterojunction fabricated
CdSnAs2 deposited on GaAs by liquid-phase epitaxy
Growth parameters studied
401
—
408
GaAs-CdSnAs2
GaAs
GaP-ZnSiP2
GaP
From tin solution
Cu2S-CdSnP2
CdSnP2
Electrical and photoelecCu2S deposited on CdSnP2 by vacuum-evaporation technique trical properties measured
CdS-CuGaS2
CuGaS2
By molecular beam
(n) CdS-O?) CuGaS2 for LEDs grown
409
403-5
410
References 1. L. Y. W E I and J. SHEWCHUN, Proc. IEEE 51, 946 (1963). 2. J. SHEWCHUN and L. Y. W E I , / . Electrochem. Soc. I l l , 1145 (1964). 3. J. SHEWCHUN, Phys. Rev. 141, 775 (1966). 4. W. G. OLDHAM, A. R. RIBEN, D . L. FEUCHT and A. G. MILNES, / . Electrochem.
5. W. G. OLDHAM and A. G. MILNES, Solid State Electron. 9, 174 (1966).
6. A. R. RIBEN, D . L. FEUCHT and W. G. OLDHAM, / . Electrochem.
Soc. 110, 53C (1963).
Soc. 113, 245 (1966).
7. J. P. DONNELLY and A. G. MILNES, / . Electrochem. Soc. 113, 297 (1966). 8. J. P. DONNELLY and A. G. MILNES, Int. J. Electron. 20, 295 (1966).
9. J. P. DONNELLY and A. G. MILNES, IEEE Trans. Electron Devices ED-14, 63 (1967).
192
SURVEY OF EXPERIMENTAL W O R K
10. 11. 12. 13. 14. 15. 16.
W. G. OLDHAM and A. G. MILNES, Solid State Electron. 7, 153 (1964). J. BROWNSON, / . Appl. Phys. 35, 1356 (1964). J. BROWNSON, Trans. Metall. Soc. AIME 232,, 450 (1965). M. J. HAMPSHIRE and G. T. WRIGHT, Brit. J. Appl. Phys. 15, 1131 (1964). S. YAWATA and R. L. ANDERSON, Phys. Stat. Sol. 12, 297 (1965). A. L. REENSTRA and H . W. THOMPSON, Jr., / . Appl. Phys. 38, 3798 (1967). E. P. EERNISSE and H. W. THOMPSON, Jr., / . Appl. Phys. 36, 2652 (1965).
17. G. W. NEUDECK, H . W. THOMPSON, Jr. and R. J. SCHWARTZ, / . Appl. Phys. 40, 4108 (1969).
18. 19. 20. 21.
W. T. LINDLEY, Dissertation, Purdue University, Dissertation Abst. 27, 2360 (1967). H. W. THOMPSON, Jr. and A. L. REENSTRA, / . Appl. Phys. 38, 4739 (1968). E. JANIK, Przeglad Elektron {Poland) 6, 65 (1965). M. GRYNGLAS and E. JANIK, Electron. Tech. 1, 85 (1968).
22. Y. KANDA, T. TOKAI and H. KOZUKA, Jap. J. Appl. Phys. 4 , 701 (1965). 23. M. NUNOSHITA, A. ISHIZU and J. YAMAGUCHI, Jap. J. Appl. Phys. 8, 1133 (1969). 24. T. KIMURA, M. NUNOSHITA and J. YAMAGUCHI, Jap. J. Appl. Phys. 5 , 639 (1966).
25. C. VAN OPDORP and H. K. J. KANERVA, Solid State Electron. 10, 401 (1967). 26. C. VAN OPDORP and J. VRAKKING, Solid State Electron. 10, 955 (1967). 27. C. J. M. VAN OPDORP, Philips Res. Reports, Suppl. N o . 10 (1969). 28. K. KURATA and T. HIRAI, / . Electrochem. Soc. 115, 869 (1968).
29. P. DURUPT, J. RAYNAUD and G. MESNARD, Solid State Electron. 12, 469 (1969). 30. Y A . A. FEDOTOV, G. A. GRUZDEVA, A. N . KOVALEV and V. A. SUPALOV, Soviet Phys. Sem. 4,699 (1970). 31. G. A. GRUZDEVA, A. N . KOVALEV, V. A. SUPALOV and Y A . A. FEDOTOV, Proc. Int. Conf on the Phys.
and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 155, Akadémiai Kiado, Budapest, 1971. 32. L. GUTAI, J. PFEIFER and I. MARKO, Proc. Int. Conf on the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 301, Akadémiai Kiado, Budapest, 1971. 33. C. SZÉKELY, I. BERTOTI, G. STUBNYA, L. VARGA and L. GUTAI, Proc. Int. Conf on the Phys. and Chem.
of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 341, Akadémiai Kiado, Budapest» 1971. 34. D. J. DUMIN, / . Electrochem. Soc. 117, 95 (1970).
35. R. GRIGOROVICI, N . CROITORU, E. TELEMAN and M. MARINA, Rev. Roumaine Phys. 10, 641 (1965).
36. G. E. ANNER, Proc. IEEE 57, 2150 (1969).
37. B. L. SHARMA, M. M. NAUTIYAL and S. N . MUKERJEE, Int. J. Electron. 32, 315 (1972).
38. V. F . KORZO, Soviet Phys. Sem. 2, 636 (1968).
39. P. J. DEASLEY, S. J. T. O W E N and P. W. WEBB, / . Mat. Sei. 5 , 1054 (1970).
40. H . J. HOVEL and A. G. MILNES, / . Electrochem. Soc. 116, 843 (1969).
41. H. J. HOVEL, Appl. Phys. Lett. 17, 141 (1970). 42. H. J. HOVEL and J. J. URGELL, / . Appl. Phys. 42, 5076 (1971).
43. H. J. HOVEL and A. G. MILNES, Int. J. Electron. 25, 201 (1968).
44. H. J. HOVEL and A. G. MILNES, IEEE Trans. Electron Devices ED-16, 766 (1969). 45. K. J. SLEGER, A. G. MILNES and D L. FEUCHT, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 73, Akadémiai Kiado, Budapest, (1971). 46. J. T. CALOW, S. J. T. O W E N and P. W. WEBB, Phys. Stat. Sol. 28, 295 (1968).
47. T. YAMATO, Jap. J. Appl. Phys. 4 , 541 (1965). 48. T. YAMATO, Proc. Int. Conf Lum., Budapest, p. 1895 (1966).
49. M. V. Κ ο τ and V. A. KOROTKOV, Ukr. Fiz. Zh. 13, 1817 (1968).
50. P. A. KOVALENKO, V. A. KOROTKOV and L. M. PANASJUK, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 363, Akadémiai Kiado, Budapest, 1971. 51. H. OKIMURA, Jap. J. Appl. Phys. 7, 1297 (1968). 52. M. E. CHUGUNOVA, M. I. ELINSON and A. G. ZHDAN, Soviet Phys. Solid State 11, 874 (1969). 53. H . VAN DIJK and J. GOORISSEN, Crystal Growth (Ed. H . S. PEISER), p . 531, Pergamon Press, U.K., 1967. 54. M. J. HAMPSHIRE, T. I. PRITCHARD and R. D. TOMLINSON, Solid State Electron. 13, 1073 (1970). 55. M. J. HAMPSHIRE, T. I. PRITCHARD, R. D . TOMLINSON and C. HACKNEY, / . Sei. Inst. 3 , 185 (1970).
56. M. J. HAMPSHIRE and R. D. TOMLINSON, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 323, Akadémiai Kiado, Budapest, 1971. 57. J. NAKAI, A. YASHUOKA, T. OKUMURA and G. K A N O , Jap. J. Appl. Phys. 4 , 545 (1965).
193
SEMICONDUCTOR HETEROJUNCTIONS
58. P. L. JONES, C. N . W. LITTING, D . E. MASON and V. A. WILLIAMS, Brit. J. Appl. Phys. Ser. 2, 1, 283
(1968). 59. V. A. WILLIAMS, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 357, Akadémiai Kiado, Budapest, 1971. 60. R LILLEY, P. L. JONES and C. N . W. LITTING, / . Mat. Sei. 5, 891 (1970).
61. T. G. R. RAWLINS, / . Mat. Sei. 5, 881 (1970).
62. J. S. HILL, T. G. R. RAWLINS and G. N . SIMPSON, Signals Res. and Dev. Estab. Report N o . 69049 (Ministry of Techn., U.K., 1970).
63. P. WILKES, / . Mat. Sei. 4, 91 (1969). 64. E. LENDVAY, J. BALÀZS, M. G À L , G. GERGELY and J. SCHANDA, Proc. Int. Conf on the Phys. and Chem.
of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 263, Akadémiai Kiado, Budapest, 1971. 65. M. V. Κ ο τ and L. M. PANASIUK, Soviet Phys. Semicond. 1, 155 (1967). 66. A. KUNIOKA and Y. SAKAI, Jap. J. Appl. Phys. 7, 1138 (1968). 67. H. OKIMURA and R. KONDO, Jap. J. Appl. Phys. 9, 274 (1970). 68. H . OKIMURA, M. KAWAKAMI and Y. SAKAI, Jap. J. Appl. Phys. 6, 908 (1967).
69. S. BROJDO, T. J. RIELEY and G. T. WRIGHT, Brit. J. Appl. Phys. 16, 133 (1965). 70. D . J. PAGE, IEEE Trans. Electron Devices ED-12, 509 (1965). 71. B. N . ZUVONKOV, Izv. VUZ Fiz. (USSR) N o . 10, p. 116 (1970).
72. M. J. RAND and J. F . ROBERTS, / . Electrochem. Soc. 115, 423 (1968). 73. J. L. RICHARDS, P. B. HART and L. M. GALLONE, / . Appl Phys. 34, 3418 (1963). 74. L. J. VAN RUYVEN and W. DEKKER, Physica 28, 307 (1962).
75. 76. 77. 78. 79.
L. J. VAN RUYVEN, J. M. P. PAPENHUIJZEN and A. C. J. VERHOVEN, Solid State Electron. 8, 631 (1965). L. J. VAN RUYVEN, Thesis, T. Hogeschool, Eindhoven, 1964. M. AOKI and H. KASANO, Jap. J. Appl. Phys. (Suppl.) 39, 234 (1970). M. AOKI and H. KASANO, Ann. Rep. Engng Res. Inst., Univ. Tokyo, Japan 28, 97 (1969). Y. HAMAKAWA, T. S. Wu and H. KJTAMURA, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 313, Akadémiai Kiado, Budapest, 1971.
80. M. WEINSTEIN, R. O. BELL and A. A. MENNA, / . Electrochem. Soc. 111, 674 (1964). 81. T. D . DZHAFAROV, T. T. DEDEGKAEV, A. A. RASKIN, V. K. SUBASHIEV and L. S. CHERTKOVA, Soviet
Phys. Semicond. 1, 1395 (1968). 82. E. K. MÜLLER and J. L. RICHARDS, / . Appl. Phys. 35, 1233 (1964). 83. 84. 85. 86.
R. P. R U T H , J. C. MARINACE and W. C. DUNLAP, / . Appl. Phys. 3 1 , 995 (1960). J. C. MARINACE, IBM J. Res. Dev. 4, 280 (1960). M. I. NATHAN and J. C. MARINACE, Phys. Rev. 128, 2149 (1962). J. C. MARINACE, IBM J. Res. Dev. 4, 248 (1960).
87. R. L. ANDERSON, Solid State Electron. 5, 341 (1962). 88. R. L. ANDERSON, IBM J. Res. Dev. 4, 283 (1960).
89. A. LOPEZ and R. L. ANDERSON, Solid State Electron. 7, 695 (1964). 90. B. AGUSTA and R. L. ANDERSON, / . Appl. Phys. 36, 206 (1965). 91. C. I. Z. MAMMANA and R. L. ANDERSON, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 279, Akadémiai Kiado, Budapest, 1971. 92. T. OKADA, T. KANO and Y. SASAKI, / . Phys. Soc. Japan 16, 2591 (1961). 93. R. R. MOEST and B. R. SHUPP, / . Electrochem. Soc. 109, 1061 (1962).
94. E. K. MÜLLER, / . Appl. Phys. 35, 580 (1964). 95. B. MOLNAR, J. J. FLOOD and M. H. FRANCOMBE, / . Appl. Phys. 35, 3554 (1964). 96. M. M. FANG and W. E. HOWARD, / . Appl. Phys. 35, 612 (1964). 97. J. SHIRAFUJI and M. NAKAYAMA, Jap. J. Appl. Phys. 3 , 801 (1964). 98. R. H . REDIKER, S. STOPEK and J. H . R. WARD, Solid State Electron. 7, 621 (1964). 99.1. R Y U and K. TAKAHASHI, Jap. J. Appl. Phys. 4 , 850 (1965). 100. V. K. ALADINSKII and A. A. MASLOV, Soviet Phys. Solid State 7, 2789 (1966). 101. R. F . LEVER and E. J. HUMINSKI, / . Appl. Phys. 37, 3638 (1966). 102. R. G. SCHULZE, / . Appl. Phys. 37, 4295 (1966). 103. P. W. KRUSE and R. G. SCHULZE, Solid State Comm. 7, N o . 11, XXI (1969).
104. P. W. KRUSE, S. T. Liu, R. G. SCHULZE and S. R. PETERSON, / . Appl. Phys. 40, 5401 (1969).
105. T. T. ANH-NGUYEN and J. VUILLOD, Rev. de Phys. Appl. 1, 161 (1966). 106. P. H . ROBINSON, RCA Rev. 24, 574 (1963).
107. Y A . A. FEDOTOV, E. A. MATSON and K. V. CHERKAS, Soviet Phys. Semicond. 1, 106 (1967).
194
SURVEY OF EXPERIMENTAL WORK
108. 109. 110. 111. 112. 113.
H. KASANO and S. IIDA, Jap. J. Appl. Phys. 6, 1038 (1967). E. S. MEIERAN, J. Electrochem. Soc. 114, 292 (1967). R. KONTRIMAS and A. E. BLAKESLEE, Electrochem. Tech. 6, 78 (1968). J. E. DAVEY and T. PANKEY, / . Appl. Phys. 39, 1941 (1968). A. LAUGIER, M. GAVAND and G. MESNARD, Solid State Electron. 13, 741 (1970). A. LAUGIER and G. MESNARD, Solid State Comm. 8, 83 (1970).
114. A. LAUGIER, M. GAVAND, L. MAYET and L. CASTET, Thin Solid Films 6, 217 (1970).
115. D . K. JADUS and D . L. FEUCHT, IEEE Trans. Electron Devices ED-16, 102 (1969). 116. G. O. LADD, Jr. and D . L. FEUCHT, Metall. Trans. 1, 609 (1970). 117. D. L. FEUCHT, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 39, Akadémiai Kiado, Budapest, 1971. 118. E. I. ADIROVICH, L. A. DUBROVSKII, V. M. RUBINOV and L. B. SUZDALKTNA, Soviet Phys. Dokl. 13,
922 (1969). 119. J. HALE, Phys. Stat. Sol. (a) 1, 245 (1970). 120. H. SIGMUND, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 435, Akadémiai Kiado, Budapest, 1971. 121. L. G. LAVRENTYEVA and I. S. ZAKHAROV, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 253, Akadémiai Kiado, Budapest, 1971. 122. F. E. ROSZTOCZY and W.W. STEIN, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 333, Akadémiai Kiado, Budapest, 1971. 123. J. PERRIN and L. CAPELLA, Compte rendu, Acad. des Sei., 267, 218 (1968). 124. V. A. VLASOV and S. A. SEMILETOV, Soviet Phys. Cryst. 12, 645 (1968). 125. A. J. NOREIKA and M. H . FRANCOMBE, / . Vac. Sei. Tech. 6, 722 (1969).
126. E. T. PETERS, Manlabs, Inc., Cambridge (U.S.A.) Report (Dec. 1962-Nov. 1965), Cont. N o . A F 19 (628)-2438 Feb. 1966. 127. A. J. NOREIKA and D. W. I N G , / . Appl. Phys. 39, 5578 (1968). 128. F . J. R E I D , S. E. MILLER and H . L. GOERING, / . Electrochem.
129. 130. 131. 132. 133. 134.
Soc. 113, 467 (1966).
D. RICHMAN, / . Electrochem. Soc. 115, 945 (1968). D . E. BOLGER and B. E. BARRY, Nature 199, 4900, 1287 (1963). G. ZEEDENBERGS and R. L. ANDERSON, Solid State Electron. 10, 113 (1967). O. IGORASHI, / . Appl. Phys. 41, 3190 (1970). R. W. THOMAS, / . Electrochem. Soc. 116, 1449 (1969). J. NOACK and W. MOHLING, Phys. Stat. Sol. (a) 3 , K 229 (1970).
135. J. J. CUOMO and R. J. GAMBINO, / . Electrochem. Soc. 115, 755 (1968).
136. T. NAKANO, Jap. J. Appl. Phys. 6, 854 (1967). 137. S. G. SHUL'MAN and Yu. I. UKHANOV, Soviet Phys. Solid State 7, 768 (1965). 138. T. IDO, M. HIROSE and T. ARIZUMI, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 335, Akadémiai Kiado, Budapest, 1971. 139. K. BERCHTOLD, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 221, Akadémiai Kiado, Budapest, 1971. 140. V. F . K O R Z O and L. A. RYABOVA, Soviet Phys. Solid State 9, 745 (1967). 141. V. F . K O R Z O and L. A. RYABOVA, Soviet Phys. Sem. 3 , 517 (1969). 142.1. FELTINSH and L. A. FREIBERGA, Latv. PSR Zinst. Akad. Vestis Fiz. Techn. Ser. {USSR), p. 123 (1965). 143. D . M. JACKSON, Jr. and R. W. HOWARD, Trans. Metall. Soc. AIME 233, 468 (1965). 144. R. L. TALLMAN, T. L. C H U , G. A. GRUBER, J. J. OBERLY and E. D . WOLLEY, / . Appl. Phys. 37, 1588
(1966).
145. E. MACHEVSKII, I. P. NEIMANNE, I. A. FELTYN and L. A. FREIBERGA, Latv. PSR Zinst. Akad. Vestis Fiz.
Tech. Ser. (USSR) 6, 62 (1969). 146. J. L. DAVIS and M. K. N O R R , / . Appl. Phys. 37, 1670 (1966).
147. G. GUIZZETTI, E. REGUZZONI and G. SAMOGGIA, Alta Frequenza 39, 554 (1970). 148. G. GUIZZETTI, F . FILIPPINI, E. REGUZZONI and G. SAMOGGIA, Phys. Stat. Sol. (a) 6, 605 (1971).
149. 150. 151. 152. 153. 154.
H . SIGMUND and K. BERCHTOLD, Phys. Stat. Sol. 20, 255 (1967). D . A. KIEWIT, Phys. Stat. Sol. (a) 1, 725 (1970). Y. SAKAI and H . FUKUDA, Jap. J. Appl. Phys. 7, 303 (1968). H . FUKUDA and Y. SAKAI, Jap. J. Appl. Phys. 9, 429 (1970). C. H. GRIFFITHS and H . SANG, Appl. Phys. Lett. 11, 118 (1967). C. H . CHAMPNESS, C. H. GRIFFITHS and H . SANG, Appl. Phys. Lett. 12, 314 (1968).
195
SEMICONDUCTOR HETEROJUNCTIONS 155. C. H . CHAMPNESS, C. H. GRIFFITHS and H. SANG, The Physics of Se and Te (Ed. W. C. COOPER), p. 349,
Pergamon Press, N.Y., 1969.
156. T. SHIOSAKI, A. KAWABATA and T. TANAKA, Jap. J. Appl. Phys. 9, 631 (1970). 157. T. SHIOSAKI, M. ITO, A. KAWABATA and T. TANAKA, Jap. J. Appl. Phys. 8, 407 (1970). 158. N . Z. DZHALILOV, G. I. IBAEV and D. S H . ABDINOV, Phys. Stat. Sol. 40, K 5 (1970).
159. 160. 161. 162. 163. 164. 165.
H. P. HEMPEL, Zeit. Angew. Physik 22, 196 (1967). S. M. SYMES and D. A. VERMILYEA, J. Appl. Phys. 36, 3687 (1965). A. KUNIOKA and Y. SAKAI, Solid State Electron. 8, 961 (1965). R. M. MOORE and C. J. BUSANOVICH, IEEE Trans. Electron Devices ED-17, 305 (1970). R. M. MOORE and C. J. BUSANOVICH, Proc. IEEE 57, 735 (1969). R. M. MOORE and C. J. BUSANOVICH, IEEE Trans. Electron Devices ED-16, 850 (1969). J. KiSPÉTER, J. LANG and L. GOMBAY, ActaPhys. Chem. Szeged (Hungary) 10, 85 (1964).
166. A. HOFFMAN and F. ROSE, Z. Physik 136, 152 (1953).
167. G. E. ANNER, Proc. IEEE ST, 1219 (1969). 168.1. T. DRAPAK, IZV. VUZ. Fiz. (USSR) 7, p. 126 (1969). 169. V. A. DROZDOV, SH. D. KURMASHEV and A. L. RVACHEV, Soviet Phys. Doklady 10, 450 (1965). 170. M. AVEN and D. A. CUSANO, / . Appl. Phys. 35, 606 (1964). 171. A. N . GEORGOBIANI and V. I. STEBLIN, Soviet Phys. Semicond. 1, 772 (1967). 172. A. N . GEORGOBIANI and V. I. STEBLIN, Phys. Stat. Sol. 2 1 , K 4 5 (1967). 173. E. D . GOLOVKINA, V. V. PASINKOV and G. M. CHANINA, Optika i Spektroskopiya
174. 175. 176. 177. 178.
19, 281 (1967).
N . A. VLASENKO and A. N . GERGELL, Phys. Stat. Sol. 26, K 77 (1968). P. N. KEATING, / . Phys. Chem. Solids 24, 1101 (1963). W. D. GILL and R. H. BUBE, / . Appl. Phys. 41, 3731 (1970); 41, 1694 (1970). N . MIYA, Jap. J. Appl. Phys. 9, 768 (1970). S. Yu. PAVELETS, G. A. FEDORUS and Y A . F. KONONETS, Soviet Phys. Semicond. 4 , 282 (1970).
179. A. I. MARCHENKO, S. Y U . PAVELETS and G. A. FEDORUS, Ukr. Fiz. Zh. 15, 1530 (1970).
180. N . NAKAYAMA, Jap. J. Appl. Phys. 8, 450 (1969). 181. R. J. MYTTON, Brit. J. Appl. Phys. Ser. 2 1, 721 (1968).
182. B. SELLE, W. LUDWIG and R. M A C H , Phys. Stat. Sol. 24, K 149 (1967).
183. B. SELLE, P. KRISPIN and J. MAEGE, Proc. Int. Conf. on the Phys. and Chem. ofSemicond. Heteroj unctions (Editor-in-chief G. SZIGETI), vol. II, p. 427, Akadémiai Kiado, Budapest, 1971. 184. F . A. SHIRLAND, Adv. Energy Conv. 6, 201 (1966). 185. M. BALKANSKII and B. CHONE, Rev. Phys. Appl. 1, 179 (1966). 186. E. R. HILL and B. G. KERAMIDAS, IEEE Trans. Electron Devices ED-14, 22 (1967). 187. J. SINGER and P. A. FAETH, Appl. Phys. Lett. 11, 130 (1967). 188. R. Κ. PUROHIT, B. L. SHARMA and A. K. SREEDHAR, / . Appl. Phys. 40, 4677 (1969). 189. T. SHITAYA and H. SATO, Jap. J. Appl. Phys. 7, 1348 (1968). 190. J. MATSUZAKI, Tech. J. Japan Broadcasting Corp. 2 1 , N o . 6, 45 (1969). 191. A. V. ANSHON and I. A. KARPOVICH, Soviet Phys. Semicond. 3 , 503 (1969). 192. I. V. EGOROVA, Soviet Phys. Sem. 2, 266 (1968). 193. J. LINDMAYER and A. G. RÉVÉSZ, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 397, Akadémiai Kiado, Budapest, 1971. 194. S. MARTINUZZI, F . CABANE-BROUTY, J. P. SORBIER, J. F . BRETZNER and J. P. DAVID, Proc. Int. Conf
on
the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 287, Akadémiai Kiado, Budapest, 1971. 195. B. W. HAKKI, Appl. Phys. Lett. 11, 153 (1967).
196. A. P. LANDSMAN, U. I. SHVETZ, B. L. ALTSHULER and R. N . TYKVENKO, Proc. Int. Conf. on the Phys.
and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 373, Akadémiai Kiado, Budapest, 1971. 197. V. N . KOMASHCHENKO and G. A. FEDORUS, Soviet Phys. Semicond. 1, 411 (1967).
198. V. N . KOMASHCHENKO, S. KYNEV, A. I. MARCHENKO and G. A. FEDORUS, Ukr. Fiz. Zh. 13,2086 (1968).
199. V. N. KOMASHCHENKO and G. A. FEDORUS, Ukr. Fiz. Zh. 13, 688 (1968); Soviet Phys. Semicond. 3 , 1001 (1970). 200. V. N . KOMASHCHENKO, N . B. LUKYANCHIKOVA, G. A. FEDORUS and M. K. SHEINKMAN, Proc. Int. Conf
on the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 213, Akadémiai Kiado, Budapest, 1971.^ 201. D. A. CUSANO, Solid State Electron. 6, 217 (1963); Rev. Phys. Appl. 1, 195 (1966). 202. D. A. CUSANO and M. R. LORENZ, Solid State Comm. 2, 125 (1964).
196
SURVEY OF EXPERIMENTAL W O R K
203. J. BERNARD, R. LANÇON, C. PAPARODITIS and M. RODOT, Rev. Phys. Appl. 1, 211 (1966).
204. A. P. LANDSMAN, and R. N . TYKVENKO, Radio Engng Electron Phys. 12, 461 (1967). 205. J. LEBRUN, Rev. Phys. Appl. 1, 204 (1966). 206. R. GUILLIEN, P. LEITZ and W. PALZ, Proc. Int. Conf. on the Phys. and Chem. ofSemicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 283, Akadémiai Kiado, Budapest, 1971. 207. M. J. CHOCKALINGAM, K. N . R A O , N . RANGARAJAN and C. V. SURYANARAYAN, Phys. Stat. Sol. (a) 2,
K 17 (1970).
208. G. A. ROZGONYI and W. J. POLITO, / . Vac. Sei. Techn. 6, 115 (1969). 209. H . SEILER, P. REIMERS and INDRADEV, Mat. Res. Bull. 4 , 119 (1969).
210. W. W. PIPER and S. J. POLICH, / . Appl. Phys. 32, 1278 (1961).
211. W. J. BITER and R. B. LAUER, / . Electrochem. Soc. 117, 126 (1970).
212. R. J. CAVENEY, / . Cryst. Growth 2, 85 (1968). 213. L. J. VAN RUYVEN and INDRADEV, / . Appl. Phys. 37, 3324 (1966).
214. W. SPENCE, W. A. GUITERREZ and H . L. WILSON, Proc. IEEE 54, 294 (1966). 215. H . SERIZAWA, O. EGUCHI, Y. TSUJIMOTO and M. FUKAI, / . Appl. Phys. 4 1 , 5032 (1970).
216. Y. TSUJIMOTI and M. FUKAI, Jap. J. Appl. Phys. 6, 1013 (1967); 6, 1024 (1967).
217. K. K. DUBENSKII, A. V. RUMYANTSEVA, Y U . S. RYZHKIN and V. I. TRAPEZNIKOV, Soviet Phys.
4, 845 (1970).
2 1 8 . 1 . K. ANDRONIK, P. A. GASHIN, I. V. DEMENTIEV, G. P. LISTUNOV, L. M. PANASJUK,
Semicond.
A. V. SIMASH-
KEVICH and D . A. SHERBAN, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 211, Akadémiai Kiado, Budapest, 1971. 219. M . V. Κ ο τ , L. M. PANASJUK, A. V. SIMASHKEVICH, A. E. TSURKAN and D . A. SHERBAN, Soviet
Solid State 7, 1001 (1965). 220. L. A. SERGEEVA, I. P. KALINKIN and V. B. ALESKOVSKII, Soviet Phys. Cryst. 10, 178 (1965). 221. W. A. GUITERREZ and H . L. WILSON, Proc. IEEE 53, 749 (1965). 222. T. IDO, S. OSHIMA and M. SAJI, Jap. J. Appl. Phys. 7, 1141 (1968).
Phys.
223. M. AVEN and W. GARWACKI, / . Electrochem. Soc. 110, 401 (1963).
224. M. AVEN and D. M. COOK, / . Appl. Phys. 32, 960 (1961).
225. A. V. VANYUKOV, A. N . KOVALEV, N . M. KONDAUROV, V. A. SUPALOV and Y A . A. FEDOTOV,
Soviet
Phys. Semicond. 4, 1157 (1971). 226. A. V. VANYUKOV, P. S. KIREEV, E. N . FIGUROVSKII, A. P. KOROVIN and Z. P. VISHNYAKOVA,
Soviet
Phys. Semicond. 3 , 1297 (1970). 227. H . ARNOLD, T. KAUFMANN and R. M A C H , Phys. Stat. Sol. (a) 1, K 5 (1970).
228. P. A. GASHIN and A. V. SIMASHKEVICH, IZV. AN USSR Ser. Neorg. Mat. 4, 1803 (1968). 229. B. KANDILAROV and R. ANDREYTCHIN, Phys. Stat. Sol. 8, 897 (1965). 230. E. A. MUZALEVSKI, I. D . KONOZENKO, A. A. PAVLENKO and S. K H . KUSHNEIR, Ukr. Fiz. Zh. 1 1 , 4 3 6
(1966).
2 3 1 . 1 . D . KONOZENKO, S. K H . KUSHNEIR, E. A. MUZALEVSKY, A. P. OSTRANISTRA, A. A. PAVELENKO and
N. S. PETRENKO, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 221, Akadémiai Kiado, Budapest, 1971. 2 3 2 . 1 . A. GRYADIL, N . I. DOVGOSHEI, V. M. BENTSU, D . V. CHEPUR, P. I. OTROKH and T. I. POVKHAN,
Izv. VUZ. Fiz. (USSR) 8, 150 (1970). 233. M. WEINSTEIN, G. A. W O L F F and B. N . D A S , Appl. Phys. Lett. 6, 73 (1965). 234. M. WEINSTEIN and G. A. W O L F F , Crystal Growth (Ed. H . STEFFEN PEISER), p . 537, Pergamon Press,
1967. 235. E. I. ADIROVICH, Y U . M. YUABOV and G. R. YAGUDEVA, Soviet Phys. Doklady 15, 553 (1970). 236. E. I. ADIROVICH, Y U . M. YUABOV and G. R. YAGUDEVA, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 151, Akadémiai Kiado, Budapest, 1971. 237. R. W. DUTTON and R. S. MÜLLER, Solid State Electron. 11, 749 (1968). 238. R. S. MÜLLER and R. ZULEEG, / . Appl. Phys. 35, 1550 (1964). 239. A. A. PAVLENKO, E. A. MUZALEVSKII and I. D . KONOZENKO, Inorg. Materials 3 , 1007 (1967).
240. Y. MARFAING, G. COHEN-SOLAL and F . BAILLY, / . Phys. Chem. Solids, Suppl. 1, 549 (1967). 241. J. BERTOTI, M. FARKAS-JAHNKE, E. LENDVAY and T. NÉMETH, / . Mat. Sei. 4 , 699 (1969).
242. M. F . KUZNETSOV and P. E. RAMAZANOV, IZV. VUZ. Fiz. (USSR), 7, 146 (1969). 243. M. F . KUZNETSOV and P. E. RAMAZANOV, IZV. VUZ. Fiz. (USSR), 8, 148 (1970).
244. S. A. SEMILETOV, Opt. Spectrosc. 19, 142 (1965).
245. R. M A C H , W. LUDWIG, G. EICHHORN and H. ARNOLD, Phys. Stat. Sol. (a) 2 , 701 (1970).
197
SEMICONDUCTOR HETEROJUNCTIONS
246. S. G. PARKER, / . Cryst. Growth 9, 177 (1971). 247. S. G. PARKER and J. E. PINNELL, / . Appl. Phys. 42, 3012 (1971). 248. G. BOUGNOT, D . ETIENNE, J. CHEVRIER and C. BOHE, Mat.
Res. Bull. 6, 145 (1971).
249. J. NAKAI, S. KAMURO, M . FUKUSHIMA and C. HAMAGUCHI, Proc. Int. Conf. on the Phys. and Chem.
of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 319, Akadémiai Kiado, Budapest, 1971. 250. H . SERREZE, S. FISCHLER and D . SAWYER, / . Appl. Phys. 39, 5330 (1968). 251. K. TAKAHASHI, W. D . BAKER and A. G. MILNES, Int. J. Electron. 27, 383 (1969).
252. T. MORRIZUMI and K. TAKAHASHI, Jap. J. Appl. Phys. 9, 849 (1970). 253. Y. M. KOTELYANSKIY, A. Yu. MITYAGIN and V. P. ORLOV, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 231, Akadémiai Kiado, Budapest, 1971.
254. R. F . POTTER and G. G. KRETSCHMAR, / . Opt. Soc. America 51, 693 (1961). 255. Z H . I. ALFEROV, V. I. KOROL'KOV, I. P. MIKHAILOVA-MIKHEEVA,
V. N . ROMANENKO and V. M. T U C H -
KEVICH, Soviet Phys. Solid State 6, 1865 (1965). 256. S. A. AITKHOZHIN and Y u . S H . TEMIROV, Kristallografia (USSR) 15, 1057 (1970). 257. L. MLADEV, P. KAMADIEV and L. PANTELEEVA, Phys. Stat. Sol. 35, K 9 (1969).
258. M. HÂRSY, N. VARGHA, E. LENDVAY and L. VARGA, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 179, Akadémiai Kiado, Budapest, 1971. 259. N . I. DOVGOSHEI, D . V. CHEPUR, I. F . KOPINETS, V. F . ZOLOTAREV, V. I. STAFEEV and A. M. FANTICH,
Izv. VUZ Fiz. (USSR), no. 8, 158 (1970). 260. E. A. SAL'KOV, Soviet Phys. Solid State 7, 227 (1965). 261. S. WATANABE and Y. MITA, / . Electrochem. Soc. 116, 989 (1969); Solid State Electron. 15, 5 (1972). 262. 263. 264. 265.
S. K. SURI and B. L. SHARMA (to appear in Int. J. Electron.). H. KOMURA, O. YONEYAMA, K. MORIOKO and H. MITSUHASHI, Jap. J. Appl. Phys. 9, 1546 (1970). H. KODERA, J. SHIRAFUJI and K. KURATA, Jap. J. Appl. Phys. 5 , 743 (1966). T. D . DZHAFAROV, M. I. STEPANOVA and V. K. SUBASHIEV, Soviet Phys. Sem. 1, 1087 (1967).
266. M. ETTENBERG, A. G. SIGAI, A. DREEBEN and S. L. GILBERT, / . Electrochem.
Soc. 118, 1355 (1971).
267. K. R. FAULKNER, D . K. WICKENDEN, B. J. ISHERWOOD, B. P. RICHARD and I. H . SCOBEY, / . Mat.
5, 308 (1970).
Sei.
268. M. E. DAVIS, G. ZEIDENBERGS and R. L. ANDERSON, Phys. Stat. Sol. 34, 385 (1969).
269. M. E. DAVIS, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. H, p. 259, Akadémiai Kiado, Budapest, 1971. 270. S. W. ING, Jr. and H. T. MINDEN, / . Electrochem. Soc. 109, 995 (1962). 271. A. I. MLAVSKY and M. WEINSTEIN, / . Appl. Phys. 34, 2885 (1963). 272. Z H . I. ALFEROV, V. L KOROL'KOV, M. K. TRUKAN and S. P. CHASHCHIN, Soviet Phys. Solid State 7 ,
1915 (1966). 273. Z H . I. ALFEROV, V. I. KOROL'KOV and M. K. TRUKAN, Soviet Phys. Solid State 8, 2813 (1967). 274. Z H . I. ALFEROV, D. Z. GARBUZOV and E. P. MOROZOV, Soviet Phys. Semicond. 1, 389 (1967).
275. Z H . I. ALFEROV, N . S. ZIMOGOROVA, M. K. TRUKAN and V. M. TUCHKEVICH, Soviet Phys. Solid State 7 ,
276. 277. 278. 279. 280.
990 (1965). R. K. PUROHIT, Phys. Stat. Sol. 24, K 57 (1967). L. C. LUTHER, Metall. Trans. 1, 593 (1970). R. C. TAYLOR, J. F . WOODS and M. R. LORENZ, / . Appl. Phys. 39, 5404 (1968). E. G. DIERSCHKE and G. L. PEARSON, / . Appl. Phys. 41, 321 (1970). D. RICHMAN and J. J. TIETJEN, Trans. Metall. Soc. AIME239, 418 (1967).
281. J. J. TIETJEN and J. A. AMICK, / . Electrochem. Soc. 113, 724 (1966). 282. Y. FURUKAWA, G. IWANE and S. A N D O , Jap. J. Appl. Phys. 8, 973 (1969). 283. G. S. KAMATH and D . BOWMAN, / . Electrochem. Soc. 114, 192 (1967).
284. L. C. LUTHER, / . Electrochem. Soc. 116, 374 (1969).
285. R. NICKLIN, A. W. RUSSELL and P. C. NEWMAN, Electron. Lett. 3 , 363 (1967).
286. C. J. FROSCH, C. D. THURMOND, H. G. WHITE and J. A. MAY, Trans. Metall. Soc. AIME239,365 287. H. FLICKER, B. GOLDSTEIN and P. A. Hoss, / . Appl. Phys. 35, 2959 (1974). 288. J. M I C H E L and D . FAHNY, J. Mat. Sei. 2, 299 (1967).
289. 290. 291. 292.
198
R. H. REDIKER, S. STOPEK and E. D . HINKLEY, Trans. Metall Soc. AIME 233, 463 (1965). R. B. CLOUGH and J. J. TIETJEN, Trans. Metall. Soc. AIME 245, 583 (1969). W. G. OLDHAM and A. G. MILNES, Solid State Electron. 6, 121 (1963). H. SEKI and M. KINOSHITA, Jap. J. Appl. Phys. 7, 1142 (1968).
(1967).
SURVEY OF EXPERIMENTAL W O R K 293. N . R. AIGINA, M. A. GUREVICH, N . M. DEMENKOV, L. A. ZHUKOVA, V. N . MASLOV and B. A. SAKHA-
ROV, Inorganic Materials 3 , 144 (1967). 294. J. J. TIETJEN, R. E. ENSTROM and D . RICHMAN, RCA Rev. 3 1 , 635 (1970). 295. G. R. CRONIN, R. W. CONRAD and S. R. BORRELLO, / . Electrochem.
296. 297. 298. 299.
300. 301. 302. 303. 304.
Soc. 113, 1336 (1966).
H. T. MINDEN, / . Electrochem. Soc. 112,300 (1965). J. P. MCCARTHY, Solid State Comm. 5 , 5 (1967); Solid State Electron. 10, 649 (1967). H. GODINHO and A. BRUNNSCHWEILER, Solid State Electron. 13, 47 (1970). V. A. VLASOV and S. A. SEMILETOV, Soviet Phys. Semicond. 2,1053 (1969); Soviet Phys. Cryst. 13, 580 (1969). G. E. BAUER, Zeit. Naturforsch. ΙΙΛ, 284 (1967). E. D. HINKLEY, R. H. REDIKER and D. K. JADUS, Appl. Phys. Lett. 6, 144 (1965). E. D . HINKLEY and R. H. REDIKER, Solid State Electron. 10, 671 (1967). E. D. HINKLEY, R. H . REDIKER and M. C. LAVINE, Appl. Phys. Lett. 5 , 110 (1964). N . K. KISELEVA, Soviet Phys. Cryst. 9, 365 (1964); Rad. Engng Electron. Phys. 9, 1574 (1965).
305. J. J. TIETJEN, H . P. MARUSKA and R. B. C L O U G H , / . Electrochem.
Soc. 116, 492 (1969).
306. F . V. WILLIAMS, U.S. Pat. 3,210,624, Oct. 5, 1965.
307. 308. 309. 310. 311. 312.
T. L. C H U , J. M. JACKSON, A. E. HYSLOP and S. C. C H U , / . Appl. Phys. 42, 420 (1971). T. L. C H U , D . W. ING and A. G. NOREIKA, Solid State Electron. 10, 1023 (1967). L. L. CHANG, L. ESAKI and P. J. STILES, / . Appl. Phys. 39, 6049 (1968). B. L. SHARMA and S. N . MUKERJEE, Phys. Stat. Sol. (a) 2 , K 21 (1970). B. L. SHARMA and S. K. SURI, Phys. Stat. Sol. (a) 16, K47 (1973). J. W. MATTHEWS, Phil. Mag. 6, 1347 (1961).
313. G. GERGELY, I. JÀNOSSY, M. MENYHÀRD, J. PEISNER, C. SZÉKELY and. G. STUBNYA, Proc. Int. Conf
on
the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 147, Akadémiai Kiado, Budapest, 1971. 314. G. O. KRAUSE, / . Vac. Sei. Tech. 6, 582 (1969). 315. R. A. BURMEISTER, Jr. and R. W. REGEHR, Trans. Metall. Soc. AIME 1AS, 565 (1969). 316. L. L. CHANG, Solid State Electron. 8, 86 (1965); 8, 721 (1965). 317. Z H . I. ALFEROV, V. M. ANDREEV,
S. G. KONNIKOV,
V. G. ΝΙΚΠΤΝ and D . N . TRET'YAKOV, Proc.
Int.
Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p. 93, Akadémiai Kiado, Budapest, 1971. 318. K. A. ARSENI, T. D . DZHAFAROV and T. T. DEDEGKAEV, Soviet Phys. Semicond. 3 , 788 (1969). 319. R. J. HERITAGE, P. PORTEOUS and B. J. SHEPPARD, / . Mat. Sei. 5, 709 (1970).
320. B. D . JOYCE, K. M. FAIRHURST, R. C. CLARKE and P. J. BORN, / . Cryst. Growth 11, 243 (1971).
321. A. ONTON, M. R. LORENZ and W. REUTER, / . Appl. Phys. 42, 3420 (1971). 322. K. K. SHIH, / . Electrochem. Soc. Ill, 387 (1970). 323. J. R. ARTHUR and J. J. LEPORE, J. Vac. Sei. Tech. 6, 545 (1969).
324. SAN-MEI-KU, / . Electrochem. Soc. 110, 991 (1963).
325. H. A. ALLEN and E. W. MEHAL, / . Electrochem. Soc. 117, 1081 (1970).
326. M. B. PANISH, I. HAYASHI and S. SUMSKI, IEEE J. Quantum Electron. QE-5, 210 (1969). 327.1. HAYASHI, M. B. PANISH and P. W. F O Y , IEEE J. Quantum Electron. QE-5, 211 (1969). 328. E. A. ULMER and I. HAYASHI, IEEE J. Quantum Electron. QE-6, 297 (1970). 329.1. HAYASHI and M. B. PANISH, / . Appl. Phys. 4 1 , 150 (1970). 330. M. B. PANISH, S. SUMSKI and I. HAYASHI, Metall. Trans. 2 , 795 (1971). 331. I. HAYASHI, M. B. PANISH and F . K. REINHART, J. Appl. Phys. 42, 1929 (1971). 332. B. I. MILLER, E. PINKAS, I. HAYASHI and R. J. CAPIK, / . Appl. Phys. 43, 2817 (1972).
333. E. PINKAS, B. I. MILLER, I. HAYASHI and P. W. F O Y , / . Appl. Phys. 4 3 , 2827 (1972). 334. M. B. PANISH and I. HAYASHI, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 419, Akadémiai Kiado, Budapest, 1971. 335. B. I. MILLER, J. E. RIPPER, J. C. DYMENT, E. PINKAS and M. B. PANISH, Appl. Phys. Lett. 18,403 (1971).
336. M. B. PANISH, I. HAYASHI and S. SUMSKI, Appl. Phys. Lett. 16, 326 (1970). 337. I. HAYASHI, M. B. PANISH, P. W. F O Y and S. SUMSKI, Appl. Phys. Lett. 17, 109 (1970).
338. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and D . N . TRET'YAKOV, Soviet
Sem. 2, 1289 (1969).
339. Z H . I. ALFEROV, V. M. ANDREEV, E. L. PORTNOI and M. K. TRUKAN, Soviet Phys. Semicond.
(1970).
Phys,
3 , 1107
340. Z H . I. ALFEROV, V. M. ANDREEV, D . Z. GARBUZOV, Y U . V. ZHILYAEV, E. P. MOROZOV, E. L. PORTNOI
and V. G. TROFIM, Soviet Phys. Semicond. 4 , 1573 (1971).
199
SEMICONDUCTOR HETEROJUNCTIONS 341. Z H . I. ALFEROV, V. M. ANDREEV,
F . A. GIMMEL'FARB,
L. M. DOLGINOV,
Y U . A. ZHITKOV, L. D .
LIBOV, E. L. PORTNOI, V. G. TROFIM, M. K. TRUKAN and E. G. SHEVCHENKO, Soviet Phys.
Semicond.
4, 1457(1971).
342. Z H . I. ALFEROV, V. M. ANDREEV, V. I. BORODULIN, G. T. PAK, E. L. PORTNOI and V. I. SHVEIKIN,
Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 159, Akadémiai Kiado, Budapest, 1971. 343. Z H . I. ALFEROV, V. M. ANDREEV, D . Z. GARBUZOV, E. P. MOROZOV, E. L. PORTNOI, M. K. TRUKAN
and V. G. TROFIM, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterjunctions (Editor-in-chief G. SZIGETI), vol. II, p . 171, Akadémiai Kiado, Budapest, 1971. 344. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and D . N . TRET'YAKOV, Krist. Tech.
4, 495 (1969).
345. Z H . I. ALFEROV, V. M. ANDREEV, P. G. ELISEEV, I. Z. PINSKER and E. L. PORTNOI, Soviet Phys.
4, 2057 (1971).
Sem.
346. H . KRESSEL and H . NELSON, RCA Rev. 30, 106 (1969).
347. H. NELSON and H. KRESSEL, Appl. Phys. Lett. 15, 7 (1969). 348. H. F. LOCKWOOD, H. KRESSEL, H. S. SOMMERS, Jr. and F. Z. HAWRYLO, Appl. Phys. Lett. 17,499 (1970). 349. H. KRESSEL, H. F. LOCKWOOD and F. Z. HAWRYLO, Appl. Phys. Lett. 18, 43 (1971); / . Appl. Phys. 4 3 , 561 (1972). 350. H. KRESSEL and F. Z. HAWRYLO, Appl. Phys. Lett. 17, 169 (1970). 351. H. KRESSEL, H. F . LOCKWOOD and H. NELSON, IEEE J. Quantum Electron. QE-6, 278 (1970). 352. J. M. WOODALL, / . Electrochem. Soc. 118, 150 (1971). 353. A. R. GOODWIN and P. R. SELWAY, IEEE J. Quantum Electron. QE-6, 285 (1970). 354. H . YONEZU, I. SAKUMA and Y. NANNICHI, Jap. J. Appl. Phys. 9, 231 (1970). 355. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and A. A. YAKOVENKO, Soviet Phys.
Semicond. 3 , 785 (1969).
356. Z H . I. ALFEROV, V. M. ANDREEV, E. L. PORTNOI and 1.1. PROTASOV, Soviet Phys. Semicond.
(1970).
3 , 1103
357. Z H . I. ALFEROV, V. M. ANDREEV, N . S. ZIMOGOROVA and D. N . TRET'YAKOV, Soviet Phys. Semicond. 3 ,
1373(1970).
358. Z H . I. ALFEROV, V. K. ERGAKOV, V. I. KOROL'KOV, V. G. NIKITIN, D . N . TRET'YAKOV and A. A.
YAKOVENKO, Soviet Phys. Semicond. 4, 1748 (1970).
359. Z H . I. ALFEROV, V. I. KOROL'KOV, V. G. NIKITIN, D . N . TRET'YAKOV and A. A. YAKOVENKO, Proc.
Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 183, Akadémiai Kiado, Budapest, 1971. 360. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, E. L. PORTNOI and D . N . TRET'YAKOV, Soviet Phys.
Semicond. 4, 132(1970).
361. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV, V. G. NIKITIN and A. A. YAKOVENKO, Soviet Phys.
Semicond. 4, 481 (1970). 362. Z H . I. ALFEROV and O. A. NINUA, Soviet Phys. Semicond. 4, 296 (1970).
363. Z H . I. ALFEROV, V. M. ANDREEV, M. B. KAGAN, I. I. PROTASOV and V. G. TROFIM, Soviet
Semicond. 4, 2047 (1971).
364. Z H . I. ALFEROV, V. M. ANDREEV, V. I. KOROL'KOV and V. I. STREMIN, Soviet Phys. Semicond.
(1971).
Phys.
4 , 1113
365. V. M. ANDREEV, V. I. KOROL'KOV, Z. M. KUBINTZEVA, Y U . R. NOSOV, N . V. POSTNIKOVA and V. G.
RESHETNYAK, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 201, Akadémiai Kiado, Budapest, 1971.
366. J. F . BLACK and S A N - M E I - K U , / . Electrochem. Soc. 113, 249 (1966).
367. C. CONSTANTINESCU and A. GOLDENBLUM, Phys. Stat. Sol. (a) 1, 551 (1970); 3 , 811 (1970). 368. H. RUPPRECHT, J. M. WOODALL and G. D . PETIT, Appl. Phys. Lett. 11, 81 (1967).
369. V. M. ANDREEV, O. I. DAVARASHVILI, M. S. MATTNOVA, G. M. MIRIANASHVILI, T. D .
MKHEIDZE,
R. A. CHARMAKADZE and R. I. CHIKOVANI, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p . 195, Akadémiai Kiado, Budapest, 1971.
370. H. KRESSEL, E. S. K O H N , H. NELSON, J. J. TIETJEN and L. R. WEISBERG, Appl. Phys. Lett. 16, 359 (1970).
371. H. SCHADE, H. NELSON and H. KRESSEL, Appl. Phys. Lett. 18, 413 (1971). 372. T. L. TANSLEY, Phys. Stat. Sol. 23, 241 (1967); 24, 615 (1967). 373. T. L. TANSLEY, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. II, p. 123, Akadémiai Kiado, Budapest, 1971. 374. J. R. DALE and M. J. JOSH, Solid State Electron. 8, 1 (1965).
200
SURVEY OF EXPERIMENTAL W O R K
375. T. L. TANSLEY and P. C. NEWMAN, Solid State Electron. 10, 497 (1967). 376. Y A . A. FEDOTOV, S. G. MADOYAN a n d A. I. GRATSERSHTEIN, IZV. VUZ Fiz. N o . 7 (Suppl.) (1969).
377. Y A . A. FEDOTOV, A. I. GRATSERSHTEIN and N . S. ZIMOGOROVA, Soviet Phy's: Semicond. 4 , 838 (1970). 378. R. W. CONRAD, P. L. H O Y T and D . D . MARTIN, / . Electrochem.
379. G. A. ANTYPAS, / . Electrochem. Soc. 117, 1393 (1970). 380. M. INOUE and K. ASAHI, Jap. J. Appl. Phys. 11, 919 (1972).
Soc. 114, 164 (1967).
381. M. G. CRAFORD, W. O. GROVES and M. J. F o x , / . Electrochem. Soc. 118, 355 (1971).
382. Z H . I. ALFEROV, A. A. GAMAZOV and N . S. ZIMOGOROVA, Soviet Phys. Semicond. 2 , 493 (1968). 383. M . S. ABRAHAMS, L. R. WEISBERG, C. J. BUIOCCHI a n d J. BLANC, / . Mat. Sei. 4 , 223 (1969).
384. M. S. ABRAHAMS, L. R. WEISBERG and J. J. TIETJEN, / . Appl. Phys. 40, 3754 (1969). 385. T. D . DZHAFAROV, Proc. Int. Conf. on the Phys. and Chem. of Semicond. /feteröyw/icf/ö/w (Editor-in-chief G. SziGETi), vol. I, p . 131, Akadémiai Kiado, Budapest, 1971. 386. T. B. RAMACHANDRAN and W. J. MORONEY, Proc. IEEE 52, 1358 (1964). 387. T. B. RAMACHANDRAN, K. K. C H O W , M. J. WORONEY and P. OLENDZENSKY, / . Appl. Phys. 36, 2594
(1965).
388. Yu. M . KOZLOV, G. I. PICHAKHCHI, V. G. SIDOROV and Yu. I. UKHANOV, Fiz. Tekh. Poluprov.
4,1824 (1970). 389. G. A. ANTYPAS and L. W. JAMES, / . Appl. Phys. 41, 2165 (1970). 390. H . A. ALLEN, / . Electrochem. Soc. 117, 1417 (1970).
(USSR)
391. A. R. CLAWSON, D . L. LILE a n d H . H . WIEDER, / . Vac. Sei. Tech. 9, 392 (1972).
392. N. K. KISELEVA and B. T. KOLOMIETS, Proc. Int. Conf. on the Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 203, Akadémiai Kiado, Budapest, 1971. 393. G. A. ANTYPAS and T. O. Y E P , / . Appl. Phys. 42, 3201 (1971). 394. L. W. JAMES, G. A. ANTYPAS, J. J. UEBBING, T. O. Y E P and R. L. BELL, / . Appl. Phys. 42, 580 (1971). 395. R. W. HAMAKER and W. B. WHITE, / . Electrochem. Soc. 116, 478 (1969). 396. H . KRAUS, S. G. PARKER and J. P. SMITH, / . Electrochem.
397. A. G. FISCHER, / . Electrochem. Soc. 118, 139 C (1971).
Soc. 114, 616 (1967).
398. H . SERIZAWA, O. EGUCHI, Y. TSUJIMOTO and M. FUKAI, / . Appl. Phys. 41, 5032 (1970). 399. Y A . A. FEDOTOV, V. A. SUPALOV, N . P. SEMENYUK, A. V. VANYUKOV a n d N . M. KONDAUROV, Fiz.
Tekh. Poluprov. 5, 390 (1971). 400. Y A . A. FEDOTOV, V. A. SUPALOV, T. P. MANUILOVA, A. V. VANYUKOV and N . M. KONDAUROV, Fiz.
Tekh. Poluprov. 5, 1602 (1971). 4 0 1 . 1 . BERTOTI, L. VARGA, M . FARKAS-JAHNKE, T. NÉMETH a n d N . A. GORYUNOVA, Proc. Int. Conf. on the
Phys. and Chem. of Semicond. Heterojunctions (Editor-in-chief G. SZIGETI), vol. I, p . 107, Akadémiai Kiado, Budapest, 1971. 402.1. BERTOTI, / . Mat. Sei. 5 , 1073 (1970).
403. A. V. ANSHON, I. A. KARPOVICH, E. I. LEONOV, V. M . ORLOV and V. V. PODOLSKH, Phys. Stat. Sol.
(a) 7, K 13 (1971).
404. N . A. GORYUNOVA, A. V. ANSHON, I. A. KARPOVICH, E. I. LEONOV and V. M. ORLOV, Proc. Int. Conf.
on the Phys. and Chem. of Semicond. Heteroj unctions (Editor-in-chief G. SZIGETI), vol. II, p. 275, Akadémiai Kiado, Budapest, 1971.
405. N . A. GORYUNOVA, A. V. ANSHON, I. A. KARPOVICH, E. I. LEONOV and V. M . ORLOV, Phys. Stat. Sol.
(a) 2, K 117 (1970).
406. A. J. SPRINGTHORPE, R. J. HARVEY and B. R. PAMPLIN, J. Cryst. Growth 6, 13 (1969).
407. B. R. PAMPLIN, Proc. Int. Conf on the Phys. and Chem. of Semicond. Heteroj unctions (Editor-inchief G. SZIGETI), vol. I , p . 327, Akadémiai Kiado, Budapest, 1971. 408. Y. A. VALOV, N . A. GORYUNOVA, E. I. LEONOV a n d V. M . ORLOV, Acta Phys.
1 (1973). 409. V. P. POPOV and B. R. PAMPLIN, / . Cryst. Growth 15, 129 (1972).
Sei. Hung. 3 3 ,
410. S. WAGNER, J. L. SHAY, B. TELL and H . M . KASPER, Appl. Phys. Lett. 22, 231 (1973).
14
201