A new Lie algebra, a corresponding multi-component integrable hierarchy and an integrable coupling

A new Lie algebra, a corresponding multi-component integrable hierarchy and an integrable coupling

Chaos, Solitons and Fractals 29 (2006) 114–124 www.elsevier.com/locate/chaos A new Lie algebra, a corresponding multi-component integrable hierarchy ...

167KB Sizes 3 Downloads 139 Views

Chaos, Solitons and Fractals 29 (2006) 114–124 www.elsevier.com/locate/chaos

A new Lie algebra, a corresponding multi-component integrable hierarchy and an integrable coupling q Yufeng Zhang a, Xiurong Guo b

b,*

, Honwah Tam

c

a Mathematical School, Liaoning Normal University, Dalian 116029, PR China Science School, Shandong University of Science and Technology, Qingdao Huangdao 266510, PR China c Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

Accepted 30 March 2005

Abstract A new simple loop algebra is constructed, which is devote to establishing an isospectral problem. By making use of Tu scheme, a new multi-component integrable hierarchy is obtained. Again via expanding the loop algebra above, another higher-dimensional loop algebra is presented. It follows that the binary integrable coupling systems are given. This method proposed in this paper can be used to other soliton hierarchies.  2005 Published by Elsevier Ltd.

1. Introduction The Lax pair method [1] is a general technique for generating single component integrable hierarchies of soliton equations. In terms of the Lax equation Lt ¼ AL  LA  ½A; L;

ð1Þ

many interesting integrable soliton equations with physical backgrounds, such as the KdV equation, the Burgers equations and so on [2,3] have been worked out. Tu Guizhang further developed the Lax pair method and presented a simple and efficient approach for generating integrable Hamiltonian hierarchies [4], Ma Wenxiu called it Tu scheme [5]. By taking advantage of the scheme, the celebrated hierarchies, such as AKNS hierarchy, KN hierarchy, WKI hierarchy, e 2 and obtained some interetc. were given [4–9]. Hu Xingbiao extended the Tu scheme in the frame of the loop algebra A esting results [6,7]. Guo Fukui again presented some integrable Hamiltonian systems of soliton equations with multipotential functions, in general, less than 8 functions, by changing the power times of the spectral parameters in the e 1 [10,11]. By using Guos idea, a few interesting results were also obtained in [12,13]. As far frame of loop algebra A as the multi-component integrable hierarchies of soliton equations are concerned, there have been developments in [14,15]. Ma Wenxiu and Zhou Ruguang gave the multi-component AKNS hierarchy by use of the Lax pair method [16]. In order to conveniently produce some interesting multi-component integrable hierarchies, a simple method was proposed in [17]. As its application, the multi-component system M-AKNS-KN hierarchy was generated. In this q *

This work was supported by The National Science Foundation of China (10471139). Corresponding author. E-mail address: [email protected] (X. Guo).

0960-0779/$ - see front matter  2005 Published by Elsevier Ltd. doi:10.1016/j.chaos.2005.03.034

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

115

paper, a simple and convenient way for obtaining multi-component integrable systems is presented. Firstly, a new Lie algebra is constructed, whose commuting operation is just the same with that in [17]. Secondly, a corresponding highere M is showed. It follows that an isospectral problem is established. By employing the Tu dimensional loop algebra G scheme, a new multi- component integrable hierarchy is obtained. In addition, as we know, integrable couplings are a quite important aspect in the field of soliton theory [18]. A general method is the perturbation approach. In [19], a simple way for producing integrable couplings were once given. By employing this approach, the integrable couplings of some known integrable systems were obtained [19–22]. Therefore, in this paper, we also construct another higher-dimensional loop algebra to deduce the integrable coupling of the hierarchy (17) presented below.

2. A new Lie algebra and its corresponding loop algebra In [17], we presented the following definition: Set a = (a1, a2, . . ., aM)T, b = ( b1, b2, . . ., bM)T to be two vectors, define their product a*b as follows a  b ¼ b  a ¼ ða1 b1 ; . . . ; aM bM ÞT . Thus, a Lie algebra was constructed by GM ¼ fa ¼ ðaij ÞM3 ¼ ða1 ; a2 ; a3 Þg;

ð2Þ

with a commuting operation defined as ½a; b ¼ ða2  b3  a3  b2 ; 2ða1  b2  a2  b1 Þ; 2ða3  b1  a1  b3 ÞÞ; 8a;b 2 GM .

ð3Þ

A corresponding loop algebra is given by e M ¼ fakm ; a 2 GM ; m ¼ 0; 1; 2; . . . ; g G

ð4Þ

with a commuting operation expressed as ½akm ; bkn  ¼ ½a; bkmþn ; 8a; b 2 GM .

ð5Þ

e M to work out multi-component integrable hierarchies. In We find that it is not easy to directly use the loop algebra G order to overcome the shortcoming, we construct another Lie algebra. 0 1 1 B1C C Definition 1. Let I M ¼ B be a matrix, and set @ ... A 1 M1 h ¼ ðI M ; 0; 0Þ; e ¼ ð0; I M ; 0Þ; f ¼ ð0; 0; I M Þ;

ð6Þ

where M is a positive integer. A commuting relation among them is defined as ½h; e ¼ ½e; h ¼ 2e; ½h; f  ¼ ½f ; h ¼ 2f ; ½e; f  ¼ ½f ; e ¼ h.

ð7Þ

Then {h, e, f} along 0 with 1 (7) constitutes a Lie algebra, and we denote it as GM. a1 B a2 C B C Definition 2. If a ¼ B .. C is a column vector, A = (0, . . ., 0, IM,0, . . ., 0)M·N is a M · N matrix, where IM is in the ith @ . A aM column of the matrix a. Then a commuting relation between them is defined as ð8Þ

a  A ¼ A  a ¼ ð0; . . . ; a  I M ; 0; . . . ; 0Þ.

Let a = a1 Æ h + a2 Æ e + a3 Æ f and b = b1 Æ h + b2 Æ e + b3 Æ f, then from the loop algebra (6) and the definition (8), we have ½a; b ¼ ða2  b3  a3  b2 Þ  h þ 2ða1  b2  a2  b1 Þ  e þ 2ða3  b1  a1  b3 Þ  f ¼ ða2  b3  a3  b2 ; 2ða1  b2  a2  b1 Þ; 2ða3  b1  a1  b3 ÞÞ; ðiÞ

ðiÞ

ðiÞ

ðiÞ

ð9Þ ðiÞ

ðiÞ

which is just the formula (3). where ai ¼ ðam1 ; am2 ; . . . ; amM ÞT ; bi ¼ ðbm1 ; bm2 ; . . . ; bmM ÞT ; i ¼ 1; 2; 3. In what follows, we shall find that the Lie algebra (6) is more convenient than GM in the aspect of deducing multi-component integrable hierarchies.

116

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

e e M as follows In terms of the Lie alegbra (6), we establish a new loop algebra G 8 hði; nÞ ¼ h  k2nþi  hk2nþi ; eði; nÞ ¼ ek2nþi ; f ði; nÞ ¼ f k2nþi ; > > > ( > > > 2eði þ j; m þ nÞ; i þ j < 2; > > > ½hði; mÞ; eðj; nÞ ¼ > > > 2eð0; m þ n þ 1Þ; i þ j ¼ 2; > > > > ( > < 2f ði þ j; m þ nÞ; i þ j < 2; ½hði; mÞ; f ðj; nÞ ¼ > > 2f ð0; m þ n þ 1Þ; i þ j ¼ 2; > > > ( > > > hði þ j; m þ nÞ; i þ j < 2; > > > ½eði; mÞ; f ðj; nÞ ¼ > > > hð0; m þ n þ 1Þ; i þ j ¼ 2; > > > : degðhði; nÞÞ ¼ degðeði; nÞÞ ¼ degðf ði; nÞÞ ¼ 2n þ i; i ¼ 0; 1; j ¼ 0; 1.

ð10Þ

3. A new multi-component integrable system e e M to work out a new multi-component integrable hierarchy, an isospectral problem Next, we use the loop algebra G is given by  ux ¼ ½U ; u; kt ¼ 0; ð11Þ U ¼ ðkI M þ u5 k I M ; u1  I M þ u3 Ik M ; u2  I M þ u4 Ik M Þ; ðiÞ

ðiÞ

ðiÞ

where ui ¼ ðu1 ; u2 ; . . . ; uM ÞT ; i ¼ 1; 2; 3; 4; 5. Set X V ¼ ðað0; mÞ  hð0; mÞ þ að1; mÞ  hð1; mÞ þ bð0; mÞ  eð0; mÞ þ bð1; mÞ  eð1; mÞ þ cð0; mÞ  f ð0; mÞ mP0

þ cð1; mÞ  f ð1; mÞÞ; ð0Þ

ð0Þ

ð0Þ

ð1Þ

ð1Þ

ð1Þ

here að0; mÞ ¼ ðam1 ; am2 ; . . . ; amM ÞT ; að1; mÞ ¼ ðam1 ; am2 ; . . . ; amM ÞT ; . . .From the stationary zero curvature equation V x ¼ ½U ; V ;

ð12Þ

one arrives at ax ð0; mÞ ¼ u1  cð0; mÞ  u2  bð0; mÞ þ u3  cð1; mÞ  u4  bð1; mÞ; ax ð1; m þ 1Þ ¼ u1  cð1; m þ 1Þ  u2  bð1; m þ 1Þ þ u3  cð0; mÞ  u4  bð0; mÞ; bx ð0; mÞ ¼ 2bð1; m þ 1Þ  2u1  að0; mÞ  2u3  að1; mÞ þ 2u5  bð1; mÞ; bx ð1; m þ 1Þ ¼ 2bð0; m þ 1Þ  2u1  að1; m þ 1Þ  2u3  að0; mÞ þ 2u5  bð0; mÞ; cx ð0; mÞ ¼ 2cð1; m þ 1Þ þ 2u2  að0; mÞ þ 2u4  að1; mÞ  2u5  cð1; mÞ; cx ð1; m þ 1Þ ¼ 2cð0; m þ 1Þ þ 2u2  að1; m þ 1Þ þ 2u4  að0; mÞ  2u5  cð0; mÞ;

ð13Þ

að0; 0Þ ¼ a ¼ ða1 ; a2 . . . ; aM ÞT ; cð0; 0Þ ¼ bð0; 0Þ ¼ að1; 0Þ ¼ bð1; 0Þ ¼ cð1; 0Þ ¼ 0; a bð1; 1Þ ¼ a  u1 ; cð1; 1Þ ¼ a  u2 ; að1; 1Þ ¼ 0; cð0; 1Þ ¼   u2x þ a  u4 ; 2 a a bð0; 1Þ ¼  u1x þ a  u3 ; að0; 1Þ ¼   u1  u2 ; 2 2 where ai are constants, i = 1,2, . . ., M. Note that n X ðnÞ Vþ ¼ ðað0; mÞ  hð0; n  mÞ þ að1; mÞ  hð1; n  mÞ þ bð0; mÞ  eð0; n  mÞ þ bð1; mÞ  eð1; n  mÞ m¼0

þ cð0; mÞ  f ð0; n  mÞ þ cð1; mÞ  f ð1; n  mÞÞ; ðnÞ

2n V ðnÞ  ¼k V  V þ .

Then Eq. (12) can be written as ðnÞ

ðnÞ

ðnÞ V þx þ ½U ; V þ  ¼ V ðnÞ x  ½U ; V  .

ð14Þ

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

117

A direct calculation reads that  ax ð1; n þ 1Þ  u1  cð1; n þ 1Þ þ u2  bð1; n þ 1Þ ðnÞ ðnÞ V þx þ ½U ; V þ  ¼ ; 2bð1; n þ 1Þ k bx ð1; n þ 1Þ  2bð0; n þ 1Þ þ 2u1  að1; n þ 1Þ ; 2cð1; n þ 1Þ þ k  cx ð1; n þ 1Þ þ 2cð0; n þ 1Þ  2u2  að1; n þ 1Þ þ k ¼ 2bð1; n þ 1Þ  eð0; 0Þ þ 2cð1; n þ 1Þ  f ð0; 0Þ þ ½bx ð1; n þ 1Þ  2bð0; n þ 1Þ þ 2u1  að1; n þ 1Þ  eð1; 1Þ þ ½cx ð1; n þ 1Þ þ 2cð0; n þ 1Þ  2u2  að1; n þ 1Þ  f ð1; 1Þ þ ½ax ð1; n þ 1Þ  u1  cð1; n þ 1Þ þ u2  bð1; n þ 1Þ  hð1; 1Þ. Thus, the zero curvature equation ðnÞ

ðnÞ

U t  V þx þ ½U ; V þ  ¼ 0

ð15Þ

leads to the following Lax integrable system 0 1 0 1 u1 2bð1; n þ 1Þ B C B C B u2 C B C 2cð1; n þ 1Þ B C B C B C B C B C C ut ¼ B u ¼ b ð1; n þ 1Þ þ 2bð0; n þ 1Þ  2u  að1; n þ 1Þ x 1 B 3C B C B C B C B u4 C B cx ð1; n þ 1Þ  2cð0; n þ 1Þ þ 2u2  að1; n þ 1Þ C @ A @ A u5 t ax ð1; n þ 1Þ þ u1  cð1; n þ 1Þ  u2  bð1; n þ 1Þ 0 0 1 1 10 0 cð0; n þ 1Þ cð0; n þ 1Þ 0 0 0 2I M  B B C C CB B B bð0; n þ 1Þ C B 0 C 0 0 C 0 2I M  B B C CB bð0; n þ 1Þ C B B C C CB B B B C C C  0 @ u  0 2I cð1; n þ 1Þ cð1; n þ 1Þ ¼B M 1 CB C ¼ J 1B C B B C C CB B B B 2I M  C C C 0 @ 0 u2  A@ bð1; n þ 1Þ A @ bð1; n þ 1Þ A @ u2   @2 0 0 u1   12 að1; n þ 1Þ  12 að1; n þ 1Þ 0 1 bx ð0; nÞ þ 2u1  að0; nÞ þ 2u3  að1; nÞ  2u5  bð1; nÞ B C B cx ð0; nÞ  2u2  að0; nÞ  2u4  að1; nÞ þ 2u5  cð1; nÞ C B C B C C  að0; nÞ þ 2u  bð0; nÞ 2u ¼B 3 5 B C B C B C  að0; nÞ þ 2u  cð0; nÞ 2u 4 5 @ A u3  cð0; nÞ þ u4  bð0; nÞ 0 @  2u1  @ 1 u2  2u1  @ 1 u3  2u5  2u1  @ 1 u4  2u1  @ 1 u1  B B @  2u2  @ 1 u1  2u2  @ 1 u2  2u5  2u2  @ 1 u3  2u2  @ 1 u4  B B ¼B 2u5  2u3  @ 1 u2  2u3  @ 1 u3  2u3  @ 1 u4  2u3  @ 1 u1  B B B 2u  2u  @ 1 u  2u4  @ 1 u2  2u4  @ 1 u3  2u4  @ 1 u4  4 1 @ 5 u3  1 cð0; nÞ B C B bð0; nÞ C B C B C B C; cð1; nÞ ¼ J 2B C B C B bð1; nÞ C @ A 1 að1; nÞ 2 0

u4 

where J1 and J2 are all the Hamiltonian operators.

0

0

ð16Þ

u3 

1

C u4  C C C 0 C C C 0 C A 0

118

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

From (13), a recurrence operator is given by L = (lij)5·5, where   1 1 1 l11 ¼ @ 2  u2  @ 1 u1  @ þ u2  @ 1 u3  u5  þ u4   @u2  @ 1 u1 ; 4 2 2   1 1 l12 ¼  u2  @ 1 u2  @  u2  @ 1 u4  þ @u2  u4  @ 1 u4 ; 2 2   @ @ l13 ¼ u5  u2  @ 1 u1  u5  þ u4   u2  @ 1 u3 ; 2 2   @ l14 ¼ u2  @ 1 u2  u5  þ u2  u4  @ 1 u4 ; 2 l15 ¼ @u4  þ2u2  @ 1 ðu1  u4  u2  u3 Þ;   1 1 l21 ¼  u1  @ 1 u1  @ þ u1  @ 1 u3  þ u1x  þu3  þu1  @ @ 1 u1 ; 2 2   2 @ 1 1 l22 ¼  u1  @ 1 u2  @  u1  @ 1 u4  u5   u1x  þu3  þu1  @ @ 1 u2 ; 4 2 2   1 1 l23 ¼ u1  @ u1  u5  þ u1x  þu3  þu1  @ @ 1 u3 ; 2   1 1 l24 ¼  @u5  þu1  @ 1 u2  u5   u1x  þu3  þu1  @ @ 1 u4 ; 2 2 l25 ¼ @u3  þ2u1  @ 1 ðu1  u4  u2  u3 Þ; @ l31 ¼  þ u2  @ 1 u1 ; l32 ¼ u2 ; @ 1 u2 ; l33 ¼ u5  þu2  @ 1 u3 ; 2 @ l34 ¼ u2  @ 1 u4 ; l35 ¼ 2u4 ; l41 ¼ u1  @ 1 u1 ; l42 ¼  u1  @ 1 u2 ; 2 l43 ¼ u1  @ 1 u3 ; l44 ¼ u5  u1  @ 1 u4 ; l45 ¼ 2u3 ;     1 1 1 1 l51 ¼ @ 1 u3   u4  @ ; l52 ¼ @ 1  u4  þ u2  @ ; 2 4 2 4 1 1 l53 ¼  @ 1 u1  u5 ; l54 ¼  @ 1 u2  u5 ; l55 ¼ @ 1 ðu1  u4  u2  u3 Þ. 2 2 And L satisfies that 0 1 0 1 cð0; nÞ cð0; n þ 1Þ B bð0; n þ 1Þ C B bð0; nÞ C B B C C B B C C B cð1; n þ 1Þ C ¼ LB cð1; nÞ C B B C C B C B C @ bð1; n þ 1Þ A @ bð1; nÞ A 1 1 að1; n þ 1Þ að1; nÞ 2 2 Hence, the system (16) can be written as 1 1 1 0 a 0 0 0 1 cð0; nÞ cð0; nÞ u1  2  u2x þ a  u4 C B a B bð0; nÞ C B bð0; nÞ C B C C C B 2  u1x þ a  u3 C B B B u2 C C C C B B B B C n C. C C C B B B ut ¼ B a  u2 C B u3 C ¼ J 1 LB cð1; nÞ C ¼ J 2 B cð1; nÞ C ¼ J 1 L B C C C B B B B C bð1; nÞ bð1; nÞ a  u1 A A A @ @ @ @ u4 A 1 1 að1; nÞ að1; nÞ u5 t 0 2 2

ð17Þ

When M > 1, the hierarchy (17) is a multi-component integrable system. A reduction case, a coupled nonlinear multi-component Schro¨dinger equation is presented by taking u3 = u4 = u5 = 0 in the hierarchy (17) as follows:  u1t ¼ a2  u1xx  a  u1  u1  u2 ; u2t ¼  a2  u2xx þ a  u1  u2  u2 .

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

119

4. The binary multi-component integrable coupling systems Next, we look for the binary multi-component integrable coupling systems of the hierarchy (17). We expand the Lie algebra (6) into the following loop algebra FM 8 > < e1 ¼ ðI M ; 0; 0; 0; 0Þ; e2 ¼ ð0; I M ; 0; 0; 0Þ; e3 ¼ ð0; 0; I M ; 0; 0Þ; e4 ¼ ð0; 0; 0; I M ; 0Þ; e5 ¼ ð0; 0; 0; 0; I M Þ; ½e1 ; e2  ¼ 2e2 ; ½e1 ; e3  ¼ 2e3 ; ½e2 ; e3  ¼ e1 ; ½e1 ; e4  ¼ e4 ; ½e1 ; e5  ¼ e5 ; ð18Þ > : ½e2 ; e4  ¼ 0; ½e3 ; e4  ¼ e5 ; ½e2 ; e5  ¼ e4 ; ½e3 ; e5  ¼ 0; ½e4 ; e5  ¼ 0. P P Let a ¼ 5i¼1 ai  ei ; b ¼ 5i¼1 bi  ei 2 F M ,define their commutative operation as ½a; b ¼ ða2  b3  a3  b2 ; 2a1  b2  2a2  b1 ; 2a3  b1  2a1  b3 ; a1  b4  a4  b1 þ a2  b5  a5  b2 ; a5  b1  a1  b5 þ a3  b4  a4  b3 Þ.

ð19Þ

A corresponding loop algebra Fe M is given as Fe M ¼ fakn ; a 2 F M ; n ¼ 0; 1; 2; . . .g;

ð20Þ

with a commuting operation bejing defined by ½akm ; bkn  ¼ ½a; bkmþn ; 8a; b 2 F M . In terms of the Lie algebra FM, we give a concrete loop algebra Fe M as follows: 8 e ðj; nÞ ¼ ei k2nþj ; i ¼ 1; 2; 3; 4; 5; j ¼ 0; 1; > > > i  > > 2ei ði þ j; m þ nÞ; i þ j < 2; > > > ½e1 ði; mÞ; e2 ðj; nÞ ¼ > > > 2e1 ð0; m þ n þ 1Þ; i þ j ¼ 2; > >  > > > 2e 3 ði þ j; m þ nÞ; i þ j < 2; > > ½e1 ði; mÞ; e3 ðj; nÞ ¼ > > > 2e3 ð0; m þ n þ 1Þ; i þ j ¼ 2; > > >  > > e 1 ði þ j; m þ nÞ; i þ j < 2; > > > ½e2 ði; mÞ; e3 ðj; nÞ ¼ > > e > 1 ð0; m þ n þ 1Þ; i þ j ¼ 2; > >  > > > < ½e ði; mÞ; e ðj; nÞ ¼ e4 ði þ j; m þ nÞ; i þ j < 2; 1 4 e4 ð0; m þ n þ 1Þ; i þ j ¼ 2; >  > > e > 5 ði þ j; m þ nÞ; i þ j < 2; > > ½e1 ði; mÞ; e5 ðj; nÞ ¼ > > > e5 ð0; m þ n þ 1Þ; i þ j ¼ 2; > > >  > > e 4 ði þ j; m þ nÞ; i þ j < 2; > > ½e2 ði; mÞ; e5 ðj; nÞ ¼ > > > e4 ð0; m þ n þ 1Þ; i þ j ¼ 2; > > >  > > e > 5 ði þ j; m þ nÞ; i þ j < 2; > > > > ½e3 ði; mÞ; e4 ðj; nÞ ¼ e5 ð0; m þ n þ 1Þ; i þ j ¼ 2; > > > > > > ½e2 ði; mÞ; e4 ðj; nÞ ¼ ½e3 ði; mÞ; e5 ðj; nÞ ¼ ½e4 ði; mÞ; e5 ðj; nÞ ¼ 0; > > : degðej ði; mÞÞ ¼ 2m þ i.

ð21Þ

ð22Þ

Let Fe M ð1Þ ¼ spanfe1 ðnÞ; e2 ðnÞ; e3 ðnÞg; Fe M ð2Þ ¼ spanfe4 ðnÞ; e5 ðnÞg; then we find e e M ; ½ Fe ð1Þ; Fe M ð2Þ Fe M ð2Þ; Fe M ¼ Fe M ð1Þ Fe M ð2Þ; Fe M ð1Þw G

ð23Þ

from which the binary integrable couplings of the hierarchy (17) can be worked out. In terms of the relations (22), an isospectral problem is constructed 8 > < ux ¼ ½U ; u; kt ¼ 0; U ¼ e1 ð1; 0Þ þ u1  e2 ð0; 0Þ þ u2  e3 ð0; 0Þ þ u3  e2 ð1; 1Þ þ u4  e3 ð1; 1Þ þ u5  e1 ð1; 1Þ ð24Þ > : þu6  e4 ð0; 0Þ þ u7  e5 ð0; 0Þ þ u8  e4 ð1; 1Þ þ u9  e5 ð1; 1Þ; ðiÞ

ðiÞ

ðiÞ

where ui ¼ ðu1 ; u2 ; . . . ; u9 ÞT ; i ¼ 1; . . . ; 9.

120

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

Taking V ¼

1 X ðað0; mÞ  e1 ð0; mÞ þ að1; mÞ  e1 ð1; mÞ þ bð0; mÞ  e2 ð0; mÞ þ bð1; mÞ  e2 ð1; mÞÞ þ cð0; mÞ  e3 ð0; mÞ m¼0

þ cð1; mÞ  e3 ð1; mÞ þ dð0; mÞ  e4 ð0; mÞ þ dð1; mÞ  e4 ð1; mÞ þ f ð0; mÞ  e5 ð0; mÞ þ f ð1; mÞ  e5 ð1; mÞ. Solving the equation similar to Eq. (12) yields 8 ax ð0; mÞ ¼ u1  cð0; mÞ  u2  bð0; mÞ þ u3  cð1; mÞ  u4  bð1; mÞ; > > > > > > ax ð1; m þ 1Þ ¼ u1  cð1; m þ 1Þ  u2  bð1; m þ 1Þ þ u3  cð0; mÞ  u4  bð0; mÞ; > > > > > > > bx ð0; mÞ ¼ 2bð1; m þ 1Þ  2u1  að0; mÞ  2u3  að1; mÞ þ 2u5  bð1; mÞ; > > > > > > > bx ð1; m þ 1Þ ¼ 2bð0; m þ 1Þ  2u1  að1; m þ 1Þ  2u3  að0; mÞ þ 2u5  bð0; mÞ; > > > > > > cx ð0; mÞ ¼ 2cð1; m þ 1Þ þ 2u2  að0; mÞ þ 2u4  að1; mÞ  2u5  cð1; mÞ; > > > > > > > cx ð1; m þ 1Þ ¼ 2cð0; m þ 1Þ þ 2u2  að1; m þ 1Þ þ 2u4  að0; mÞ  2u5  cð0; mÞ; > > > > > > > d x ð0; mÞ ¼ dð1; m þ 1Þ þ u1  f ð0; mÞ þ u3  f ð1; mÞ þ u5  dð1; mÞ  u6  að0; mÞ  u7  bð0; mÞ > > > > > > > u8  að1; mÞ  u9  bð1; mÞ; > > > > > < d x ð1; m þ 1Þ ¼ dð0; m þ 1Þ þ u1  f ð1; m þ 1Þ þ u3  f ð0; mÞ þ u5  dð0; mÞ  u6  að1; m þ 1Þ > u7  að1; m þ 1Þ  u7  bð1; m þ 1Þ  u8  að0; mÞ  u9  ð0; mÞ; > > > > > > > fx ð0; mÞ ¼ f ð1; m þ 1Þ þ u2  dð0; mÞ þ u4  dð1; mÞ  u5  f ð1; mÞ  u6  cð0; mÞ þ u7  að0; mÞ > > > > > > > u8  cð1; mÞ þ u9  að1; mÞ; > > > > > > fx ð1; m þ 1Þ ¼ f ð0; m þ 1Þ þ u2  dð1; m þ 1Þ þ u4  dð0; mÞ  u5  f ð0; mÞ  u6  cð1; m þ 1Þ > > > > > > > > > þu7  að1; m þ 1Þ  u8  cð0; mÞ þ u9  að0; mÞ; > > > > > cð0; 0Þ ¼ bð0; 0Þ ¼ að1; 0Þ ¼ bð1; 0Þ ¼ cð1; 0Þ ¼ dð0; 0Þ ¼ f ð0; 0Þ ¼ dð1; 0Þ ¼ f ð1; 0Þ ¼ 0; > > > > > > > að0; 0Þ ¼ a ¼ ða1 ;    ; aM ÞT ; að1; 1Þ ¼ 0; bð1; 1Þ ¼ a  u1 ; cð1; 1Þ ¼ a  u2 ; > > > > > a a > > > dð1; 1Þ ¼ a  u6 ; f ð1; 1Þ ¼ a  u7 ; að0; 1Þ ¼  2  u1  u2 ; bð0; 1Þ ¼ 2  u1x þ a  u3 ; > > : cð0; 1Þ ¼ a2  u2x þ a  u4 ; f ð0; 1Þ ¼ a  u9  a  u7x ; dð0; 1Þ ¼ a  u6x .

ð25Þ

Denoting ðnÞ

Vþ ¼

n X ðað0; mÞ  e1 ð0; n  mÞ þ að1; mÞ  e1 ð1; n  mÞ þ bð0; mÞ  e2 ð0; n  mÞ m¼0

þ bð1; mÞ  e2 ð1; n  mÞ þ cð0; mÞ  e3 ð0; n  mÞ þ cð1; mÞ  e3 ð1; n  mÞ þ dð0; mÞ  e4 ð0; n  mÞ þ dð1; mÞ  e4 ð1; n  mÞ þ f ð0; mÞ  e5 ð0; n  mÞ þ f ð1; mÞ  e5 ð1; n  mÞÞ; V

ðnÞ 

ðnÞ

¼ k2n V  V þ ;

then a direct calculation gives ðnÞ

ðnÞ

V þx þ ½U ; V þ  ¼ 2bð1; n þ 1Þ  eð0; 0Þ þ 2cð1; n þ 1Þ  f ð0; 0Þ þ ½bx ð1; n þ 1Þ  2bð0; n þ 1Þ þ 2u1  að1; n þ 1Þ  eð1; 1Þ þ ½cx ð1; n þ 1Þ þ 2cð0; n þ 1Þ  2u2  að1; n þ 1Þ  f ð1; 1Þ þ ½ax ð1; n þ 1Þ  u1  cð1; n þ 1Þ þ u2  bð1; n þ 1Þ  hð1; 1Þ þ ½d x ð1; n þ 1Þ  dð0; n þ 1Þ  u2  f ð1; n þ 1Þ þ u6  að1; n þ 1Þ þ u7  bð1; n þ 1Þ  e4 ð1; 1Þ  dð1; n þ 1Þ  e4 ð0; 0Þ þ f ð1; n þ 1Þ  e5 ð0; 0Þ þ ½fx ð1; n þ 1Þ þ f ð0; n þ 1Þ  u2  dð1; n þ 1Þ þ u6  cð1; n þ 1Þ  u7  að1; n þ 1Þ  e5 ð1; 1Þ. Thus, the zero curvature equation ðnÞ

ðnÞ

U t  V þx þ ½U ; V þ  ¼ 0;

ð26Þ

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

leads to

0

u1

1

0

2bð1; n þ 1Þ

121

1

B C B C B u2 C B C 2cð1; n þ 1Þ B C B C B C B C Bu C B C bx ð1; n þ 1Þ þ 2bð0; n þ 1Þ  2u1  að1; n þ 1Þ B 3C B C B C B C Bu C B C cx ð1; n þ 1Þ  2cð0; n þ 1Þ þ 2u2  að1; n þ 1Þ B 4C B C B C B C B C B C ax ð1; n þ 1Þ þ u1  ð1; n þ 1Þ  u2  bð1; n þ 1Þ ut ¼ B u5 C ¼ B C B C B C B C B C B u6 C B C dð1; n þ 1Þ B C B C B C B C B u7 C B C f ð1; n þ 1Þ B C B C B C B C B u8 C B d x ð1; n þ 1Þ þ dð0; n þ 1Þ þ u2  f ð1; n þ 1Þ  u6  að1; n þ 1Þ  u7  bð1; n þ 1Þ C @ A @ A fx ð1; n þ 1Þ  f ð0; n þ 1Þ þ u2  dð1; n þ 1Þ  u6  cð1; n þ 1Þ þ u7  að1; n þ 1Þ u9 t 0 0 1 1 10 0 0 0 0 0 cð0; n þ 1Þ cð0; n þ 1Þ 0 0 0 2I M  B B C C CB B B bð0; n þ 1Þ C B 0 C 0 2I M  0 0 0 0 0 0 C B B C CB bð0; n þ 1Þ C B B C C CB B cð1; n þ 1Þ C B 0 CB cð1; n þ 1Þ C 2I  0 @ u  0 0 0 0 M 1 B B C C CB B B C C CB B bð1; n þ 1Þ C B 2I  CB bð1; n þ 1Þ C 0 @ 0 u  0 0 0 0 B B C C CB M 2 B B C C CB B C e B1 C CB 1 @ 0 u1  u2  2 0 0 0 0 CB 2 að1; n þ 1Þ C ¼ J 1 B 2 að1; n þ 1Þ C ¼B 0 B B C C CB B B C C CB B dð0; n þ 1Þ C B 0 0 0 0 0 IM  0 0 0 CB dð0; n þ 1Þ C B B C C CB B B C C CB B f ð0; n þ 1Þ C B 0 CB f ð0; n þ 1Þ C 0 0 0 0 0 I 0 0 M B B C C CB B B C C CB B dð1; n þ 1Þ C B 0 CB dð1; n þ 1Þ C 0 0 u  2u  I  0 @ u  7 6 M 2 @ @ A A A@ f ð1; n þ 1Þ f ð1; n þ 1Þ 0 0 u6  0 2u7  0 I M  u2  @ 0 1 bx ð0; nÞ þ 2u1  að0; nÞ þ 2u3  að1; nÞ  2u5  bð1; nÞ B C B C cx ð0; nÞ  2u2  að0; nÞ  að0; nÞ  2u4  að1; nÞ þ 2u5  cð1; nÞ B C B C B C 2u3  að1; nÞ  2u5  bð0; nÞ B C B C B C 2u4  að0; nÞ þ 2u5  cð0; nÞ B C B C B C u3  cð0; nÞ þ u4  bð0; nÞ ¼B C B C B C B d x ð0; nÞ  u2  f ð0; nÞ  u3  f ð1; nÞ  u5  dð1; nÞ þ u6  að0; nÞ þ u7  bð0; nÞ þ u8  að1; nÞ þ u9  bð1; nÞ C B C B C B fx ð0; nÞ  u2  dð0; nÞ  u4  dð1; nÞ þ u5  f ð1; nÞ þ u6  cð0; nÞ  u7  að0; nÞ þ u8  cð1; nÞ  u9  að1; nÞ C B C B C B C u  f ð0; nÞ  u  dð0; nÞ þ u  að0; nÞ þ u  bð0; nÞ 3 5 8 9 @ A u4  dð0; nÞ þ u5  f ð0; nÞ þ u8  cð0; nÞ þ u9  að0; nÞ 0 1 cð0; nÞ cð0; nÞ B B C C B bð0; nÞ C B bð0; nÞ C B B C C B B C C B cð1; nÞ C B cð1; nÞ C B B C C B B C C B bð1; nÞ C B bð1; nÞ C B B C C B B C C B1 C e B1 C ¼ ðM N ÞB 2 að1; nÞ C ¼ J 2 B 2 að1; nÞ C B B C C B B C C B dð0; nÞ C B dð0; nÞ C B B C C B B C C B f ð0; nÞ C B f ð0; nÞ C B B C C B B C C B dð1; nÞ C B dð1; nÞ C @ @ A A f ð1; nÞ f ð1; nÞ 0

1

ð27Þ

122

with

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

0

2u1  @ 1 u1 

@  2u1  @ 1 u2 

u8  u9  @ 1 u1 

u9  @ 1 u2 

B B @  2u2  @ 1 u1  2u2  @ 1 u2  B B 2u3  @ 1 u1  2u5  2u3  @ 1 u2  B B B 2u5  2u4  @ 1 u1  2u4  @ 1 u2  B B M ¼B u3  u4  B B u6  @ 1 u1  u7  u6  @ 1 u2  B B B u6  u7  @ 1 u1  u7  @ 1 u2  B B u8  @ 1 u1  u9  u8  @ 1 u2  @ 0

u3  0 0 2u5  2u1  @ 1 u4  B 2u2  @ 1 u4  u4  0 0 B B B 2u3  @ 1 u4  0 0 0 B B B 2u4  @ 1 u4  0 0 0 B N ¼B 0 0 0 0 B B 1 B u9  u6  @ u4  2u8  @ u2  B 1 B u  @ u  2u  u  @ 7 4 9 2 B B @ u8  @ 1 u4  0 u5  u3  u9  @ 1 u4  0 u4  u5 

2u1  @ 1 u3 

1

C 2u5  2u2  @ 1 u3  C C C 2u3  @ 1 u3  C C 1 2u4  @ u3  C C C C 0 C 1 C u6  @ u3  C C 1 u8  u7  @ u3  C C C u8  @ 1 u3  A 1 u9  @ u3  0 0 0 0 0

0 0 0 0 0

1

C C C C C C C C C C C u5  u3  C C u4  u5  C C C 0 0 A 0 0

In terms of (25), a recurrence operator is given by L ¼ ðA

B Þ;

where 0

M1

N1

P1

u2  @ 1 u2  u5  þð@2 u2  u4 Þ@ 1 u4 

B B B M2 N2 P2 P3 B B 1 1 1 @ B  þ u2  @ u1  u2  @ u2  u5  þu2  @ u3  u2  @ 1 u4  B 2 B B @ B  u1  @ 1 u2  u1  @ 1 u3  u5  u1  @ 1 u4  u1  @ 1 u1  2 B B 1 1 A¼B  12 @ 1 u1  u5   12 @ 1 u2  u5  B @ ð12 u3   14 u1  @Þ @ ð 14 u2  @  12 u4 Þ B B B M3 N3 P4 Q1 B B B M4 N4 P5 Q2 B B B 1 1 1 u6  @ u1  u7  u6 @ u2  u6  @ u3  u9  u6  @ 1 u4  B @ u7  @ 1 u1  u6  0 u7  @ 1 u3  u8  u7  @ 1 u4  0 1 0 0 0 0 B C B C 0 0 0 0 B C B C B C B C 0 0 0 0 B C B C B C 0 0 0 0 B C B C B C 0 0 0 0 B¼B C B C B 2 C B @  u2  u2  u5  @u2  þu2  @  u3  @u5  u2  u4  @u3  þu2  u5  C B C B C B @u  þu  @ þ u  @ 2  u  u  u  @u  u  u  @u  u  u  C 2 2 4 2 2 5 4 2 5 5 2 3 B C B C B C B C @ u1  u5  u3  @ A u2  @ u4  u5 

W1

1

C C C C C C 2u4  C C C C 2u3  C C 1 @ ðu1  u4  u2  u3 Þ C C C C C R1 C C C R2 C C C 2u8  C A 0 W2

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

123

with W 1 ¼ @u4  þ2u2  @ 1 ðu1  u4  u2  u3 Þ; W 2 ¼ @u3  þ2u1  @ 1 ðu1  u4  u2  u3 Þ; 1 M 3 ¼ @u6  @ 1 u1  þu2  u6   u6  @ 1 u1  @ þ u6  @ 1 u3  þu8  @ 1 u1 ; 2   1 @ 1  u1  @ 1 u2  N 3 ¼ @ðu7  u6  @ u2 Þ  u6  @u2  @  u6  @ 1 u4  þu7  2 2  u8  @ 1 u2  þu9 ; P 4 ¼ @u6  @ 1 u3  þu2  u8  u6  @ 1 u1  u5  þu8  @ 1 u3 ; Q1 ¼ @ðu9  u6  @ 1 u4 Þ þ u2  u7  @ 1 u4  þu6  @ 1 u2  u5  u5  u7  u1  u7  @ 1 u4   u8  @ 1 u4 ; R1 ¼ 2@u8  2u2  u9  þ2u6  @ 1 ðu1  u4  u2  u3 Þ  þ2u3  u7 ;   @ 1  u2  @ 1 u1   u7  @ 1 u1  @ M 4 ¼ @u6  @u7  @ 1 u1  þu6  @ 1 u1  þu6  2 2 þ u7  @ 1 u3  u8  þu9  @ 1 u1 ; 1 N 4 ¼ u2  u7   u7  @ 1 u2  @  u7  @ 1 u4  u9  @ 1 u2 ; 2 P 5 ¼ @u8  @u7  @ 1 u3  þu2  u6  @ 1 u3  þu6  u5  u2  u6  @ 1 u3  u7  @ 1 u1  u5  þ u9  @ 1 u3 ; Q2 ¼ @u7  @ 1 u4  þu2  u9  þu7  @ 1 u2  u5  u9  @ 1 u4 ; R2 ¼ @u9  þu2  u8  u4  u6  þu7  @ 1 ðu1  u4  u2  u3 Þ; while M1, N1, P1, M2, N2, P2, P3 are the same with those of Lin (17). Therefore, the system (27) can be written as 0 0 1 1 cð0; 1Þ u1 B bð0; 1Þ C Bu C B B 2C C B B C C B cð1; 1Þ C B u3 C B B C C B B C C B bð1; 1Þ C B u4 C B1 B C C n C C e B ut ¼ B B u5 C ¼ J 1 L B 2 að1; 1Þ C B B C C B dð0; 1Þ C B u6 C B B C C B f ð0; 1Þ C B u7 C B B C C B B C C @ dð1; 1Þ A @ u8 A f ð1; 1Þ u9 t 0 1 cð0; 1Þ B bð0; 1Þ C B C B C B cð1; 1Þ C B C B C B bð1; 1Þ C B1 C n1 C ¼e J 2L B B 2 að1; 1Þ C B C B dð0; 1Þ C B C B f ð0; 1Þ C B C B C @ dð1; 1Þ A f ð1; 1Þ

ð28Þ

ð29Þ

The systems (28) and (29) are the binary multi-component integrable couplings of the multi-component hierarchy (17) according to the definition of the integrable couplings. Acknowledgement The second author (Y. Zhang) is grateful to Professor M.Wadati for his enthusiastic guidance and help.

124

Y. Zhang et al. / Chaos, Solitons and Fractals 29 (2006) 114–124

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]

Ablowitz MJ, Clarkson PA. Solitons, Nonlinear Evolution Equations and Inverse Scattering. PA: SIAM; 1991. Magri F. J Math Phys 1978;19:1156. Li Y. Soliton and Integrable System. Shanghai: Shanghai Scientific and Technological Education Publishing House; 1999. Tu G. J Math Phys 1989;30(2):330. Ma W. Chin Ann Math Sin 1992;12A(1):115. Hu X. J Phys A 1994;27:2497. Hu X. J Phys A 1997;30:619. Fan E. J Math Phys 2000;41(11):7769. Fan E. Physica A 2002;301:105. Guo F. J Syst Sci Math Sci 2000;22(1):36. Zhang Y. Phys Lett A 2003;317:280. Guo F, Zhang Y. Acta Phys Sin 2002;51(5):951. Zhang Y, Zhang H. J Math Phys 2002;43(1):466. Tsuchida T, Wadati M. Phys Lett A 1999;257:53. Tsuchida T, Wadati M. J Phys Soc Jpn 1999;69:2241. Ma W, Zhou R. Chin Ann Math 2002;23B(3):373. Guo F, Zhang Y. J Math Phys 2003;44(12):5793. Ma W, Fuchssteiner B. Chaos, Solitons & Fractals 1996;7:1227. Guo F. Acta Math Phys Sin 1999;19(5):507. Zhang Y et al. Chaos, Solitons & Fractals 2004;19:563. Zhang Y et al. Phys Lett A 2002;299:543. Zhang Y. Chaos, Solitons & Fractals 2003;18:855.