Applied Mathematics and Computation 218 (2011) 643–650
Contents lists available at ScienceDirect
Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc
New extended Lie algebra and the generalized integrable Liouville hierarchy Weidong Zhao a, Huanhe Dong a,c, Hui Wang b,⇑ a
College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China Department of Mathematics, Shanghai University, Shanghai 200444, China c Key Laboratory for Robot and Intelligent Technology of Shandong Province, Qingdao, 266510, China b
a r t i c l e
i n f o
a b s t r a c t f1 is presented, from Starting from a new Lie algebra G1, the corresponding loop algebra G which a Liouville integrable hierarchy is given by using of variational identity. It follows that an expanding Lie algebra G2 is obtained based on G1, furthermore, a related Lax intef2 . With the help of grable hierarchy is presented by making use of its related loop algebra G variational identity, it is not difficult to prove that the hierarchy has Hamiltonian structure and is Liouville integrable. It is also can be seen that the second hierarchy is the expanding model of the first one. Ó 2011 Elsevier Inc. All rights reserved.
Keywords: Lie algebra Loop algebra Variational identity Hamiltonian structures Liouville integrable
1. Introduction It was an important aspect of soliton theory to research for new integrable Hamiltonian systems, Lax integrable or Liouville integrable. Professor Tu proposed the famous trace identity [1], which was a powerful tool for generating Hamiltontian structure of some integrable soliton equation hierarchies. Professor Ma called it Tu scheme [2]. A host of Hamiltonian structures of soliton equations were presented with its help [3–9]. In order to use Tu scheme more rapidly, Guo and Yu introduce a kind of Lie algebra [10] An1 ¼ xlðn; CÞ ¼ fz ¼ ðxij Þnn jxij 2 Cg along with the commutator,
½Z; Y ¼ ZMY YMZ;
8Z; Y; M 2 An1
ð1Þ
which satisfies that
½Z; Y ¼ ½Y; Z;
½aX þ bY; Z ¼ a½Z; X þ b½Y; X;
½½X; Y; Z þ ½½Y; Z; X þ ½½Z; X; Y ¼ 0:
An1
ð2Þ
However, based on and its corresponding Lie algebra, some integrable hierarchies have not Hamiltonian structures, that is to say the trace identity is not suitable for them. To overcome the limitation of the trace identity, the Generalized Tu Formula (GTF) and the variational identity appear as its development [11–20], they have their powerful scopes of applications respectively. Especially, Ma proposed the variational identity in [19], and applied it to discuss Hamiltonian structures of soliton equations associated with general Lie algebras, which enrich the theory of soliton. In Ref. [18], component-trace identities are introduced on a particular class of non-semisimple matrix Lie algebras, which can be applied to Hamiltonian structures of integrable couplings, in an effort to supplement the theory of multi-component Hamiltonian equations. In the following, we will see the application of the variational identity, the main ideas are as follows. ⇑ Corresponding author. E-mail address:
[email protected] (H. Wang). 0096-3003/$ - see front matter Ó 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.06.001
644
W. Zhao et al. / Applied Mathematics and Computation 218 (2011) 643–650
First, set up an isospectral problem
ux ¼ UMu; ut ¼ VMu:
ð3Þ
Second, solving the stationary zero curvature equation
V x ¼ ½U; V;
ð4Þ
where
U¼
;
U1 U2
V¼
V1
ð5Þ
V2
and
½U; V ¼
½U 1 ; V 1
ð6Þ
½U 1 ; V 2 þ ½U 2 ; V 1
with the commutator satisfy (1). From the zero curvature equation
U t V x þ ½U; V ¼ 0
ð7Þ
a Lax integrable system appears
ut ¼ KðuÞ:
ð8Þ
In this paper, we first construct a new Lie algebra, and obtain its related Liouville integrable hierarchy with the help of variational identity. Then, we further extended the new Lie algebra to get a six-dimensional Lie algebra, and obtain an integrable coupling of hierarchy in Section 3. It is easy to verify that it is also Liouville integrable. 2. A new Lie algebra and a Liouville integrable hierarchy Consider a new Lie algebra G1 = span{e1, e2, e3}, where
0
1 1 0 1 B C e1 ¼ @ 0 2 0 A; 1 0 1
0
1 0 1 0 B C e2 ¼ @ 1 0 1 A; 0 1 0
0
1 0 1 0 B C e3 ¼ @ 1 0 1 A; 0 1 0
0
1 1 0 0 B C M 1 ¼ @ 0 12 0 A 0 0 0
ð9Þ
with the commutative relations
½e1 ; e2 ¼ 2e3 ;
½e1 ; e3 ¼ 2e2 ;
½e2 ; e3 ¼ e1
ð10Þ
and the corresponding loop algebra is given by
e 1 ¼ spanfe1 ðnÞ; e2 ðnÞ; e3 ðnÞg; G
ei ðnÞ ¼ ei k2n ;
i ¼ 1; 2; 3
(2m+2n)
along with the commutators [ei(m), ej(n)] = [ei, ej]k Take the isospectral problem
, m, n 2 Z, 1 6 i, j 6 6.
ux ¼ UM1 u; ut ¼ VM1 u; kt ¼ 0;
ð11Þ
where
U¼ V¼ where
ak ¼
U1 U2 V1
¼
¼
V2 X
e1 ð1Þ þ qþr e2 ð0Þ þ qr e3 ð0Þ 2 2 2 2 kðu1 þu e2 ð0Þ þ u1 u e3 ð0ÞÞ 2 2
;
a1 e1 ð0Þ þ a2 e2 ð0Þ þ a3 e3 ð0Þ kðb1 e1 ð0Þ þ b2 e2 ð0Þ þ b3 e3 ð0ÞÞ
ak;m k2m ;
mP0
!
bk ¼
X
bk;m k2m ;
;
ð12Þ
k ¼ 1; 2; 3:
mP0
From (6), solving the stationary zero curvature equation
V x ¼ ½U; V;
ð13Þ
W. Zhao et al. / Applied Mathematics and Computation 218 (2011) 643–650
645
we have
8 a1;mx ¼ qþr a3;m þ rq a2;m ; > > 2 2 > > > > a2;mx ¼ ðr qÞa1;m þ 2a3;mþ1 ; > > > > > a3;mx ¼ ðq þ rÞa1;m þ 2a2;mþ1 ; > > > u1 þu2 qþr rq
b ¼ ðr qÞb þ 2b þ ðu u Þa 1;m 3;mþ1 2 1 1;m ; > 2;mx > > > > > b3;mx ¼ ðr þ qÞb1;m þ 2b2;mþ1 ðu1 þ u2 Þa1;m ; > > > > a2;0 ¼ a3;0 ¼ 0; a1;0 ¼ a – 0; b2;0 ¼ b3;0 ¼ 0; b1;0 ¼ b – 0; > > > : 2 2 a; a3;1 ¼ qr a; b2;1 ¼ qþr b þ u1 þu a; b3;1 ¼ qr b þ u1 u a: a2;1 ¼ qþr 2 2 2 2 2 2
ð14Þ
Denoting
00
V þðnÞ
a1;m
a2;m þ a3;m
1 1
a1;m
C BB a2;m a3;m A C C B @ a3;m a2;m 2a1;m C B n B X C 2n2m a1;m a2;m þ a3;m a1;m Ck B 0 1 ¼ ; C B b2;m þ b3;m b1;m b1;m C m¼0 B C B B C @ k@ b3;m b2;m 2b1;m b2;m b3;m A A b1;m
b2;m þ b3;m
ðnÞ 2n V ðnÞ þ þ V ¼ k V;
b1;m
then
2a3;nþ1 e2 ð0Þ þ 2a2;nþ1 e3 ð0Þ ðnÞ : V ðnÞ þx þ ½U; V þ ¼ kð2b3;nþ1 e2 ð0Þ þ 2b2;nþ1 e3 ð0ÞÞ
ð15Þ
Taking V ðnÞ ¼ V ðnÞ þ , thus the zero curvature equation ðnÞ U t V ðnÞ ¼ 0; x þ ½U; V
determined the system
0
1
q
0
2a2;nþ1 þ 2a3;nþ1
1
0
0
0
0
2
10
b3;nþ1 b2;nþ1
1
CB C B C B r C B 2a B C B 3;nþ1 2a2;nþ1 C B 0 0 2 0 CB b2;nþ1 b3;nþ1 C ut ¼ B C ¼ B CB C¼B C ¼ J 1 Pnþ1 : @ u1 A @ 2b2;nþ1 þ 2b3;nþ1 A @ 0 2 0 0 A@ a3;nþ1 a2;nþ1 A 2b3;nþ1 2b2;nþ1 2 0 0 0 u2 t a2;nþ1 a3;nþ1
ð16Þ
In terms of (14), we have
0 Pnþ1
2@ 2r @ 1 q
B B q @ 1 q B 2 ¼B B 0 @ 0
2r @ 1 u1 u22 @ 1 q
r 1 @ r 2 @ þ 2q q@ 1 r 2
2q @ 1 u1 u21 @ 1 q
0
@2 2r @ 1 q
0
2q @ 1 q
1
r 1 @ u2 þ u22 @ 1 r 2 C q 1 @ u2 þ u21 @ 1 r C C 2 CP n r C r@ 1 r 2 A 1 q @ þ q@ r 2 2
¼ L1 P n :
where L1 is a recurrence operator. Therefore, the system (16) can be written as
1 1 0 rb u2 a q B r C B qb u a C 1 C B C B ut ¼ B C ¼ J 1 Ln1 B C: A @ u1 A @ r a 0
u2
ð17Þ
qa
t
Finally, in order to get the Hamiltonian structure of the generalized soliton-equation hierarchy, we introduce the bilinear form functional f(A, B) [17–20] to be
f ðA; BÞ ¼ trðA1 B1 Þ þ trðA1 B2 Þ þ trðA2 B1 Þ
ð18Þ
which is one of so-called tri-trace identities in [18], where
A¼
A1 ; A2
and f(A, B) holds
B¼
B1 ; B2
fN A; B 2 K
ð19Þ
646
W. Zhao et al. / Applied Mathematics and Computation 218 (2011) 643–650
(10) (20) (30) (40)
Symmetry: f(A, B) = f(B, A), Bilinearity: f(c1A1 + c2A2, B) = c1f(A1, B) + c2f(A2, B), e Communication: f ð½A; B; CÞ ¼ f ðA; ½B; CÞ; 8A; B; C 2 G. rBf(A, B) = A,rBf(A, Bx) = rBf(Ax, B) = Ax,
e N , the variational identity Assume U; V 2 K
d @ @U kc f V; f ðV; U k Þ ¼ kc dui @k @ui
ð20Þ
was obtained as a special case of Ref. [18]. Thus, a direct calculate yields
@U 1 ¼ 4b1 k2 þ 4a1 k þ ½u1 ða3 a2 Þ u2 ða2 þ a3 Þ; f V; @k 2 @U 1 1 @U 1 1 ¼ ða3 a2 Þ þ kðb3 b2 Þ; f V; ¼ ða2 þ a3 Þ kðb2 þ b3 Þ; f V; @q 2 2 @r 2 2 @U 1 @U 1 ¼ kða3 a2 Þ; f V; ¼ kða3 þ a2 Þ: f V; @u1 2 @u2 2
ð21Þ
Inserting the above results into (20) yields
1 1 ða3 a2 Þ þ 12 kðb3 b2 Þ 2 B 1 1 d 1 @ B ða2 þ a3 Þ 2 kðb2 þ b3 Þ C C 4b1 k2 þ 4a1 k þ ½u1 ða3 a2 Þ u2 ða2 þ a3 Þ ¼ kc kc B 2 C: 1 A du 2 @k @ kða3 a2 Þ 2 0
ð22Þ
12 kða3 þ a2 Þ Comparing of the coefficients of k2n2 on the both side of (18) admits
1 b3;nþ1 b2;nþ1 C B d B b2;nþ1 b3;nþ1 C ðu1 ða3;nþ1 a2;nþ1 Þ u2 ða3;nþ1 þ a2;nþ1 Þ þ 8b1;nþ2 Þ ¼ ðc 2n 1ÞB C: @ a3;nþ1 a2;nþ1 A du 0
a2;nþ1 a3;nþ1 Taking n = 0, gives c = 2. Thus, we get
0
b3;nþ1 b2;nþ1
1
C B b B 2;nþ1 b3;nþ1 C ¼B C; @ a3;nþ1 a2;nþ1 A
ð1Þ dHnþ1
du
a2;nþ1 a3;nþ1 ð1Þ Hnþ1
1 where ¼ 2n1 ðu1 ða3;nþ1 a2;nþ1 Þ u2 ða3;nþ1 þ a2;nþ1 Þ þ 8b1;nþ2 Þ . Therefore, the hierarchy (17) have Hamiltonian structure
ð1Þ
ut ¼ J 1
dHnþ1 : du
ð23Þ
It is easy to verity that J 1 L1 ¼ L1 J 1 . Therefore, the hierarchy (23) is Liouville integrable. Taking u1 = u2 = 0, Eq. (17) reduce to AKNS hierarchy
ut ¼ J
where J ¼
br dHnþ1 ; ¼ JLn du bq 0 2
2 ; L¼ 0
@2 2r @ 1 q 2q @ 1 q
ð24Þ r r@ 1 r 2 @ þ 2q q@ 1 r 2
! .
3. A new extended Lie algebra and the generalized integrable hierarchy We expand Lie algebra G1 into the following Lie algebra
G2 ¼ spanfh1 ; h2 ; h3 ; h4 ; h5 ; h6 g;
647
W. Zhao et al. / Applied Mathematics and Computation 218 (2011) 643–650
where
h1 ¼ h5 ¼
e1
0
0 0
e1 e2
e2
0
h2 ¼
;
h6 ¼
;
e2 0 0 e3
; e2 e3 ; 0 0
h3 ¼
e3
0
;
h4 ¼
0 e3 M1 0 ; M2 ¼ 0 M1
0
e1
e1
0
; ð25Þ
f2 is given by Its corresponding loop algebra G
f2 ¼ spanfei ðnÞg6 ; G i¼1
ei ðnÞ ¼ ei k2n ;
i ¼ 1; 2; 3; 4; 5; 6;
along with the commutators
½h1 ðmÞ; h2 ðnÞ ¼ 2h3 ðm þ nÞ;
½h1 ðmÞ; h3 ðnÞ ¼ 2h2 ðm þ nÞ;
½h1 ðmÞ; h5 ðnÞ ¼ 2h6 ðm þ nÞ;
½h1 ðmÞ; h6 ðnÞ ¼ 2h5 ðm þ nÞ; ½h2 ðmÞ; h3 ðnÞ ¼ h1 ðm þ nÞ; ½h2 ðmÞ; h4 ðnÞ ¼ 2h6 ðm þ nÞ; ½h2 ðmÞ; h6 ðnÞ ¼ h4 ðm þ nÞ; ½h3 ðmÞ; h4 ðnÞ ¼ 2h5 ðm þ nÞ; ½h3 ðmÞ; h5 ðnÞ ¼ h1 ðm þ nÞ; ½h4 ðmÞ; h5 ðnÞ ¼ 2h3 ðm þ nÞ;
½h4 ðmÞ; h6 ðnÞ ¼ 2h2 ðm þ nÞ;
ð26Þ
½h5 ðmÞ; h6 ðnÞ ¼ h1 ðm þ nÞ;
½h1 ðmÞ; h4 ðnÞ ¼ ½h2 ðmÞ; h5 ðnÞ ¼ ½h3 ðmÞ; h6 ðnÞ ¼ 0: Consider an isospectral problem
ux ¼ UM2 u; ut ¼ VM2 u; kt ¼ 0;
ð27Þ
where
U¼
U1
¼
U2
V¼
V1
2 2 h2 ð0Þ þ qr h3 ð0Þ þ u1 þu h5 ð0Þ þ u1 u h6 ð0Þ h1 ð1Þ þ qþr 2 2 2 2
¼
V2
4 4 6 6 kðu3 þu h2 ð0Þ þ u3 u h3 ð0Þ þ u5 þu h5 ð0Þ þ u5 u h6 ð0ÞÞ 2 2 2 2
! ;
a1 h1 ð0Þ þ a2 h2 ð0Þ þ a3 h3 ð0Þ þ a4 h5 ð0Þ þ a5 h6 ð0Þ ; kðb1 h1 ð0Þ þ b2 h2 ð0Þ þ b3 h3 ð0Þ þ b4 h5 ð0Þ þ b5 h6 ð0ÞÞ
where
ak ¼
X
ak;m k2m ;
mP0
bk ¼
X
bk;m k2m ;
k ¼ 1; 2; 3; 4; 5:
mP0
From (6), the stationary zero curvature equation,
V x ¼ ½U; V
ð28Þ
gives rise to
8 2 > a ¼ rq a2;m þ qþrþu21 þu2 a3;m þ rqþu22 u1 a4;m þ u1 þu a5;m ; > 2 2 > 1;mx > > > a ¼ 2a3;mþ1 þ ðr qÞa1;m ; > > 2;mx > > > a 3;mx ¼ 2a2;mþ1 ðq þ rÞa1;m ; > > > > > > > a4;mx ¼ 2a5;mþ1 þ ðu2 u1 Þa1;m ; > > > > > a5;mx ¼ 2a4;mþ1 ðu1 þ u2 Þa1;m ; > > qþrþu1 þu2 rq 5 2 3 6 3 6 > b3;m þ rqþu22 u1 b4;m þ u1 þu b5;m þ u4 u a2;m þ u5 þu a3;m þ u4 u a4;m þ u6 u a4;m þ u5 þu a5;m > 2 2 2 2 2 2 2 < b1;mx ¼ 2 b2;m þ b2;mx ¼ 2b3;mþ1 þ ðr qÞb1;m þ ðu4 u3 Þa1;m ; > > > > b3;mx ¼ 2b2;mþ1 ðq þ rÞb1;m ðu3 þ u4 Þa1;m ; > > > > > b4;mx ¼ 2b5;mþ1 þ ðu2 u1 Þb1;m þ ðu6 u5 Þa1;m ; > > > > > b5;mx ¼ 2b4;mþ1 ðu1 þ u2 Þb1;m ðu5 þ u6 Þa1;m ; > > > > > a2;0 ¼ a3;0 ¼ a4;0 ¼ a5;0 ¼ 0; a1;0 ¼ a – 0; b2;0 ¼ b3;0 ¼ b4;0 ¼ b5;0 ¼ 0; > > > > 2 2 4 > b1;0 ¼ b – 0; a2;1 ¼ qþr a; a3;1 ¼ qr a; a4;1 ¼ u1 þu a; a5;1 ¼ u1 u a; b2;1 ¼ qþr b þ u3 þu a; > 2 2 2 2 2 2 > > : b ¼ qr b þ u3 u4 a; b ¼ u1 þu2 b þ u5 þu6 a; b ¼ u1 u2 b þ u5 u6 a: 3;1
2
2
4;1
2
2
5;1
2
2
ð29Þ Denoting 2n V ðnÞ þ ¼ V þk ; ðnÞ 2n V ðnÞ þ þ V ¼ k V:
ð30Þ
648
W. Zhao et al. / Applied Mathematics and Computation 218 (2011) 643–650
A direct calculation reads
2a3;nþ1 h2 ð0Þ þ 2a2;nþ1 h3 ð0Þ þ 2a5;nþ1 h5 ð0Þ þ 2a4;nþ1 h6 ð0Þ ðnÞ : V þx þ ½U; V ðnÞ ¼ þ kð2b3;nþ1 h2 ð0Þ þ 2b2;nþ1 h3 ð0Þ þ 2b5;nþ1 h5 ð0Þ þ 2b4;nþ1 h6 ð0ÞÞ
ð31Þ
Taking V ðnÞ ¼ V ðnÞ þ , then the zero curvature equation ðnÞ U t V ðnÞ ¼0 x þ ½U; V
admits
1 1 0 0 2a2;nþ1 þ 2a3;nþ1 0 0 0 0 q B r C B 2a3;nþ1 2a2;nþ1 C B 0 0 0 0 C B B C B C B B C B B u1 C B 2a5;nþ1 þ 2a4;nþ1 C B 0 0 0 0 C B B C B C B Bu C B 2a B 2C B 5;nþ1 2a4;nþ1 C B 0 0 0 0 ut ¼ B C ¼ B C¼B B u3 C B 2b3;nþ1 þ 2b2;nþ1 C B 0 2 0 0 C B B C B C B Bu C B 2b B 4C B 3;nþ1 2b2;nþ1 C B 2 0 0 0 C B B C B @ u5 A @ 2b5;nþ1 þ 2b4;nþ1 A @ 0 0 0 2 2b5;nþ1 2b4;nþ1 0 0 2 0 u6 t 0
0 2 0 2 0 0 0
0
0
0
0
2
0
0
0 0
0
0
0
0
0
0
0
0
10 1 b3;nþ1 b2;nþ1 0 C B 0 CB b3;nþ1 b2;nþ1 C C CB C 2 CB b5;nþ1 b4;nþ1 C CB C C B 0 C CB b5;nþ1 b4;nþ1 C CB C ¼ J 2 Pnþ1 : C B 0 CB a3;nþ1 a2;nþ1 C C C B 0 C CB a3;nþ1 a2;nþ1 C CB C 0 A@ a5;nþ1 a4;nþ1 A 0
ð32Þ
a5;nþ1 a4;nþ1
From (29), it is easy to obtain that
Pnþ1 ¼
A B P n ¼ L2 P n ; 0 A
where
0 B B B A¼B B @
@2 12 r@ 1 ðqÞ
0
12 u2 @ 1 q
1 r@ 1 r 2 @ þ 12 q@ 1 ðqÞ 2 1 u @ 1 r 2 2
2@ 12 u2 @ 1 u1
12 u1 @ 1 q
1 u @ 1 r 2 1
12 u1 @ 1 u1
12 q@ 1 q
12 r@ 1 u3 12 u4 @ 1 q
B B 1 q@ 1 u3 1 u3 @ 1 q B 2 B ¼ B 2 1 B 1 u6 @ q 1 u2 @ 1 u3 2 @ 2 12 u5 @ 1 q 12 u1 @ 1 u3
12 r@ 1 u1
1 r@ 1 u2 2 1 q@ 1 u2 2 1 u @ 1 u2 2 2
12 q@ 1 u1
1 r@ 1 u4 2 1 q@ 1 u4 2 1 u @ 1 r 2 6 1 u @ 1 r 2 5
@ 2
þ 12 u1 @ 1 u2
1 C C C C; C A
þ 12 u4 @ 1 r
12 r@ 1 u5 12 u4 @ 1 u1
þ 12 u3 @ 1 r
12 q@ 1 u5 12 u3 @ 1 u1
þ 12 u2 @ 1 u4
12 u2 @ 1 u5 12 u6 @ 1 u1
þ 12 u1 @ 1 u4
12 u1 @ 1 u5 12 u5 @ 1 u1
1 r@ 1 u6 2 1 q@ 1 u6 2
þ 12 u4 @ 1 u2
1
C þ 12 u3 @ 1 u2 C C C 12 u2 @ 1 u5 12 u6 @ 1 u1 C A 1 u @ 1 u6 þ 12 u5 @ 1 u2 2 1
and L2 is a recurrence operator. Therefore, the system (32) can be reduced as
0
q
1
0
rb u4 a
1
B r C B qb u3 a C C B C B C B C B B u1 C B u2 b u6 a C C B C B Bu C B u b u a C 5 C B 2C B 1 ut ¼ B C ¼ J 2 Ln2 B C: C B u3 C B ra C B C B C Bu C B qa C B 4C B C B C B A @ u5 A @ u2 a u6
t
ð33Þ
u1 a
Now, we will establish the Hamiltonian structure of the hierarchy. From (18) and (19), a direct calculate reads that
@U ¼ 8b1 k2 þ 8a1 k þ u3 ða3 a2 Þ þ u5 ða5 a4 Þ u6 ða4 þ a5 Þ u4 ða2 þ a3 Þ; f V; @k @U @U @U ¼ ða3 a2 Þ þ kðb3 b2 Þ; f V; ¼ ða3 a2 Þ þ kðb3 b2 Þ; f V; ¼ ða5 a4 Þ þ kðb5 b4 Þ; f V; @q @r @u1 @U @U ¼ ða5 a4 Þ þ kðb5 b4 Þ; f V; ¼ kða3 a2 Þ; f V; @u2 @u3 @U @U @U ¼ kða3 a2 Þ; f V; ¼ kða5 a4 Þ; ¼ kða5 a4 Þ: V; f V; @u4 @u5 @u6 ð34Þ
W. Zhao et al. / Applied Mathematics and Computation 218 (2011) 643–650
649
Substituting the above results into the tri-trace identity yields
d ð8b1 k2 þ 8a1 k þ 2u3 ða3 a2 Þ þ u5 ða5 a4 Þ u6 ða4 þ a5 Þ u4 ða2 þ a3 ÞÞ du 1 0 ða3 a2 Þ þ kðb3 b2 Þ B ða3 a2 Þ þ kðb3 b2 Þ C C B B ða5 a4 Þ þ kðb5 b4 Þ C C B B @ ða5 a4 Þ þ kðb5 b4 Þ C C: ¼ kc kc B C kða3 a2 Þ @k B C B C B a Þ kða 3 2 C B A @ kða5 a4 Þ kða5 a4 Þ
ð35Þ
Comparison of the coefficients of k2n2 on the both side of (30) gives
d ð8b1;nþ2 þ u3 ða3;nþ1 a2;nþ1 Þ þ u5 ða5;nþ1 a4;nþ1 Þ u6 ða4;nþ1 þ a5;nþ1 Þ u4 ða2;nþ1 þ a3;nþ1 ÞÞ du 1 0 b3;nþ1 b2;nþ1 B b3;nþ1 b2;nþ1 C C B B b5;nþ1 b4;nþ1 C C B B b5;nþ1 b4;nþ1 C C ¼ ðc 2n 1ÞB B a3;nþ1 a2;nþ1 C: C B B a3;nþ1 a2;nþ1 C C B @ a5;nþ1 a4;nþ1 A a5;nþ1 a4;nþ1
ð36Þ
Taking n = 0, gives c = 2. Thus, we have
0
dHnþ1 du
b3;nþ1 b2;nþ1
1
B b3;nþ1 b2;nþ1 C C B C B B b5;nþ1 b4;nþ1 C C B C B b B 5;nþ1 b4;nþ1 C ¼B C; B a3;nþ1 a2;nþ1 C C B C B a B 3;nþ1 a2;nþ1 C C B @ a5;nþ1 a4;nþ1 A a5;nþ1 a4;nþ1
ð2Þ Hnþ1
1 where ¼ 2n1 ð8b1;nþ2 þ u3 ða3;nþ1 a2;nþ1 Þ þ u5 ða5;nþ1 a4;nþ1 Þ u6 ða4;nþ1 þ a5;nþ1 Þ u4 ða2;nþ1 þ a3;nþ1 Þ . Therefore, the hierarchy (32) have Hamiltonian structure
ð2Þ
ut ¼ J 2 Pnþ1 ¼ J 2
dHnþ1 : du
ð37Þ
After a complex calculation, we get J 2 L2 ¼ L2 J 2 . Therefore, the hierarchy (32) is Liouville integrable. When u1 = u2 = u5 = u6 = 0, (32) can be reduced to (16), from J1, L1 and J2, L2, it is easy to get that (37) is an integrable coupling of (23). 4. Conclusions In this paper, a new Lie algebra G1 and its extension algebra G2 and their related loop algebras are constructed. And based f2 and G f1 , two Lax integrable hierarchy are presented respectively. Then with the help of the variational identity, we get on G the Hamiltonian of the hierarchy which are presented before, and prove that they are all Liouville integrable. In fact, based on the two new Lie algebras, we can obtain other integrable hierarchies by designing different isospectral problem. Acknowledgement The Project supported by the Natural Science Foundation of China (Grant No. 60971022). References [1] G.Z. Tu, The trace identity a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys. 30 (1989) 330–338. [2] W.X. Ma, A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction, Chin. J. Contemp. Math. 13 (1992) 79–89. [3] W.X. Ma, An approach for constructing nonisospectral hierarchies of evolution equations, J. Phys. A 25 (1992) 719–726.
650
W. Zhao et al. / Applied Mathematics and Computation 218 (2011) 643–650
[4] H.H. Dong, X.B. Gong, A (2+1)-dimensional multi-component AKNS integrable hierarchy and its expanding model, Chaos. Soliton. Fract. 33 (2007) 945– 950. [5] H.H. Dong, N. Zhang, A multi-component matrix loop algebra and its application, Commun. Theor. Phys. 44 (2005) 997–1001. [6] T.C. Xia, F.C. You, Multi-component Dirac equations hierarchy and its multi-component integrable couplings system, Chin. Phys. 16 (2007) 605–610. [7] X.B. Hu, An approach to generate supper extensions of integrable system, J. Phys. A 30 (1997) 619–632. [8] E.G. Fan, Integrable systems of derivative nonlinear schrodinger type and their multi-Hamiltonian structure, J. Phys. A 34 (2001) 513–519. [9] Y.F. Zhang, F.K. Guo, Two pairs of Lie algebras and the integrable couplings as well as the Hamiltonian structure of the Yang hierarchy, Chaos. Soliton. Fract. 34 (2007) 490–495. [10] F.K. Guo, F.X. Yu, A class of Lie algebras, J. Shandong Univ. Sci. Technol. 22 (3) (2003) 87–88. [11] Y.F. Zhang, J. Liu, Induced Lie algebras of a six-dimensional matrix Lie algebra, Common. Theor. Phys. 50 (2008) 289–294. [12] F.K. Guo, Y.F. Zhang, A type of new loop algebra and a generalized Tu formula, Commun. Theor. Phys. 51 (2009) 39–46. [13] H.H. Dong, X.R. Wang, The quadratic-form identity for constructing Hamiltonian structures of the NLS-MKdV hierarchy and multi-component Levi hierarchy, Chaos. Soliton. Fract. 37 (1) (2008) 245–251. [14] F.K. Guo, Y.F. Zhang, Two unified formula, Phys. Lett. A 366 (2007) 403–410. [15] W.X. Ma, B. Fuchssteiner, Integrable theory of the perturbation equations, Chaos. Soliton. Fract. 7 (1996) 1227–1250. [16] W.X. Ma, X.X. Xu, Y.F. Zhang, Semi-direct sums of Lie algebras and continuous integrable couplings, Phys. Lett. A 351 (2006) 125–130. [17] W.X. Ma, M. Chen, Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras, J. Phys. A 39 (2006) 10787–10801. [18] W.X. Ma, Y. Zhang, Component-trace identities for Hamiltonian structures, Appl. Anal. 89 (2010) 457–472. [19] W.X. Ma, Variational identities and applications to Hamiltonian structures of soliton equations, Nonlinear Anal.: Theor. Methods Appl. 71 (2009) 1716– 1726. [20] W.X. Ma,Variational identities and Hamiltonian structures, in: Nonlinear. Mod. Math. Phys. 1–27, W.X. Ma, X.B. Hu, Q.P. Liu, (Eds.), AIP Conference Proceedings, vol. 1212, American Institute of Physics, Melville, NY, 2010.