A new loop algebra and a multi-component integrable system similar to the TC hierarchy

A new loop algebra and a multi-component integrable system similar to the TC hierarchy

Chaos, Solitons and Fractals 24 (2005) 627–630 www.elsevier.com/locate/chaos A new loop algebra and a multi-component integrable system similar to th...

264KB Sizes 1 Downloads 56 Views

Chaos, Solitons and Fractals 24 (2005) 627–630 www.elsevier.com/locate/chaos

A new loop algebra and a multi-component integrable system similar to the TC hierarchy Yuqin Yao School of Information Science and Engineering, Shandong University of Science and Technology, Taian 271019, PR China Accepted 14 September 2004 Communicated by Prof. Y. Aizawa

Abstract e with 3M dimensions is constructed by use of some properties of exterior algebra, which is A new loop algebra X devoted to establishing a new isospectral problem. As its application, a multi-component integrable system similar to the TC hierarchy is obtained, whose reduction case presents a multi-component KdV equation.  2004 Elsevier Ltd. All rights reserved.

1. Introduction Searching for new integrable hierarchies of soliton equations has been an important and interesting topic in soliton theory. Guizhang Tu once proposed a simple and straightforward method for generating integrable Hamiltonian hierarchies of soliton equations in Ref. [1]. By making use of Tu scheme, many integrable systems, such as AKNS hierarchy, KdV hierarchy, Schrodinger systems and so on, have been obtained [1–5]. As far as the multi-component integrable hierarchies are concerned, there have been developed in Refs. [6,7]. Recently a Lie algebra with 3M dimensions was constructed in Ref. [8] and a simple method for producing multi-component integrable hierarchies of soliton equations was proposed. In this paper, another loop algebra is presented by use of exterior algebra. It follows that an isospectral problem is established and the multi-component integrable system similar to the TC hierarchy is worked out by using Tu scheme. As its reduction case, the multi-component KdV equation is obtained.

2. A type of new loop algebra Definition 1 [8]. If a = (a1, a2, . . . , aM)T, b = (b1, b2, . . . , bM)T are two column vectors, their vector product a * b is defined as a  b ¼ b  a ¼ ða1 b1 ; a2 b2 ; . . . ; aM bM ÞT ; where ai, bi(i = 1, 2, . . ., M) are real or complex numbers.

E-mail address: [email protected] 0960-0779/$ - see front matter  2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2004.09.066

ð1Þ

628

Y. Yao / Chaos, Solitons and Fractals 24 (2005) 627–630

Introducing the diagonal matrix ~a ¼ diagða1 ; a2 ; . . . ; aM Þ, then (1) can be written as a  b ¼ ~ab:

ð2Þ

Definition 2. Set a = (a1, a2, . . ., aM)T, A = (0, . . . , 0, ai, 0, . . ., 0)M·N, we define their product as a  A ¼ A  a ¼ ð0; . . . ; 0; a  ai ; 0; . . . ; 0Þ; where ai = (ai1, ai2, . . ., aiM)T, aij(j = 1, 2, . . ., M) are real or complex numbers, which have no relations with independent variables x, t. Definition 3. If x1 ¼ ðx11 ; 0; 0Þ, x2 ¼ ð0; x22 ; 0Þ, x3 ¼ ð0; 0; x33 Þ are linear independent real or complex M · 3 matrix vectors, which have no relations with x and t. X denotes a linear space expanded by {x1, x2, x3}. i.e. X ¼ fwa jwa ¼ a1  x1 þ a2  x2 þ a3  x3 g

ð3Þ

ai (i = 1, 2, 3) are the same as those in Definition 2, xii ¼ ðxii1 ; xii2 ; . . . ; xiiM ÞT , xiij are real or complex numbers. Define a commutation operation [wa, wb] as ½wa ; wb   wa ^ wb ¼ ða1  b2  a2  b1 Þ  x1 ^ x2 þ ða1  b3  a3  b1 Þ  x1 ^ x3 þ ða2  b3  a3  b2 Þ  x2 ^ x3 ;

ð4Þ

x1 ^ x2 ¼ x2 ^ x1 ¼ x3 ;

ð5Þ

x1 ^ x3 ¼ x3 ^ x1 ¼ x2 ;

ða  x1 þ b  x2 Þ ^ x3 ¼ a  x2  b  x1 ;

x2 ^ x3 ¼ x3 ^ x2 ¼ x1 ;

ða  x2 þ b  x3 Þ ^ x1 ¼ a  x3  b  x2 ;

ða  x1 þ b  x3 Þ ^ x2

¼ a  x3 þ b  x1 ;

ð6Þ

where we call the symbol ^ a kind of exterior product, wa, wb 2 X. A direct verification indicates that X along with (4)– (6) constitutes a Lie algebra. Specially, setting x1 ¼ ðI M ; 0; 0Þ;

x2 ¼ ð0; I M ; 0Þ;

x3 ¼ ð0; 0; I M Þ

then (4) becomes the formula (4) in Ref. [8]. Therefore, the Lie algebra (3) with (4)–(6) is the generalized form of that presented in Ref. [8]. Definition 4. Set x1 ðnÞ ¼ x1  k2nþ1  x1 k2nþ1 ; x1 ðmÞ ^ x2 ðnÞ ¼ x3 ðm þ n þ 1Þ;

x2 ðnÞ ¼ x2 k2nþ1 ;

x3 ðnÞ ¼ x3 k2n

x1 ðmÞ ^ x3 ðnÞ ¼ x2 ðm þ nÞ;

x2 ðmÞ ^ x3 ðnÞ ¼ x1 ðm þ nÞ:

ð7Þ

e. then {x1(n), x2(n), x3(n)} is a loop algebra, denote it as X Consider the following isospectral problem: 

ux ¼ U ^ u; e; ut ¼ V ^ u; U; V ; u 2 X

ð8Þ

whose compatibility gives rise to uxt ¼ U t ^ u þ U ^ ðV ^ uÞ ¼ utx ¼ V x ^ u þ V ^ ðU ^ uÞ; U t ^ u  V x ^ u þ ðU ^ V Þ ^ u ¼ 0; ðU t  V x þ U ^ V Þ ^ u ¼ 0:

ð9Þ

Sine u is arbitrary, the formula (9) reduces to U t  V x þ ½U ; V  ¼ 0:

ð10Þ

Hence, the compatibility of the Lax pair (8) leads to the zero curvature equation (10). This implies that the evolution equations derived from (8) are Lax integrable.

Y. Yao / Chaos, Solitons and Fractals 24 (2005) 627–630

629

3. The multi-component integrable system similar to the TC hierarchy Consider the following isospectral problem ux ¼ U ^ u;

U ¼ I M  x1 ð0Þ þ q  x1 ð1Þ þ r  x2 ð1Þ;

kt ¼ 0;

ð11Þ

where M

IM

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{ ¼ ð0; 0; . . . ; 0ÞT ;

Set V ¼

X iP0

q ¼ ðq1 ; q2 ; . . . ; qM ÞT ;

r ¼ ðr1 ; r2 ; . . . ; rM ÞT :

ðað0; iÞ  x1 ðiÞ þ bð0; iÞ  x2 ðiÞ þ cð0; iÞ  x3 ðiÞÞ; ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

ð0Þ

where að0; iÞ ¼ ðai1 ; ai2 ; . . . ; aiM ÞT , bð0; iÞ ¼ ðbi1 ; bi2 ; . . . ; biM ÞT , cð0; iÞ ¼ ðci1 ; ci2 ; . . . ; ciM ÞT . Solving the stationary zero curvature equation V x ¼ ½U ; V 

ð12Þ

gives ax ð0; 1 þ iÞ ¼ r  cð0; iÞ; bx ð0; 1 þ iÞ ¼ cð0; 1 þ iÞ þ q  cð0; iÞ; cx ð0; iÞ ¼ bð0; 1 þ iÞ þ q  bð0; iÞ  r  að0; iÞ; M

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{ bð0; 0Þ ¼ cð0; 0Þ ¼ 0 ¼ ð0; 0; . . . ; 0ÞT ;

að0; 0Þ ¼ a ¼ ða1 ; a2 ; . . . ; aM Þ;

bð0; 1Þ ¼ a  r;

ð13Þ

M

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{ cð0; 1Þ ¼ a  rx ; að0; 1Þ ¼ 0 ¼ ð0; 0; . . . ; 0ÞT ; cð0; 2Þ ¼ a  rxxx  a  qx  r  2a  q  rx ;

bð0; 2Þ ¼ a  rxx  a  q  r; a að0; 2Þ ¼   r  r: 2

Denoting ðnÞ

Vþ ¼

n X ðað0; iÞ  x1 ðn  iÞ þ bð0; iÞ  x2 ðn  iÞ þ cð0; iÞ  x3 ðn  iÞÞ; i¼0 ðnÞ

2n V ðnÞ  ¼ k V Vþ ;

then Eq. (12) can be written as ðnÞ

ðnÞ

ðnÞ V þx þ ½U ; V þ  ¼ V ðnÞ x  ½U ; V  :

ð14Þ

It is easy to find that the power times of k on the left-hand side in Eq. (14) P1, while the power times of k on the right-hand side in Eq. (14) 60.Therefore, the power times of k on both sides in Eq. (14) are 1 and 0. Thus ðnÞ

ðnÞ

V þx þ ½U ; V þ  ¼ ax ð0; n þ 1Þ  x1 ð1Þ þ ðbx ð0; n þ 1Þ  cð0; n þ 1ÞÞ  x2 ð1Þ  bð0; n þ 1Þ  x3 ð0Þ: ðnÞ

Taking V ðnÞ ¼ V þ þ Dn , Dn = (q * r1) * b(0, n + 1) Æ x1(1) + b(0,n + 1) Æ x2(1), then ðnÞ  ¼ ½ax ð0; n þ 1Þ  ððq  r1 Þ  bð0; n þ 1ÞÞx   x1 ð1Þ  cð0; n þ 1Þ  x2 ð1Þ; V ðnÞ x þ ½U ; V

the zero curvature equation ðnÞ ¼0 U t  V ðnÞ x þ ½U ; V

determines the Lax integrable system        að0; n þ 1Þ q o oðq  r1 Þ ððq  r1 Þ  bð0; n þ 1ÞÞx  ax ð0; n þ 1Þ ¼ ¼ bð0; n þ 1Þ r tn cð0; n þ 1Þ ðq  r1 Þ  o o !    1 að0; n þ 1Þ að0; n þ 1Þ o o~q~r ¼ ¼J ; bð0; n þ 1Þ bð0; n þ 1Þ ~q~r1 o o where J is Hamilton operator, r1 is the reverse vector of the vector r, so is ~r1 .

ð15Þ

ð16Þ

630

Y. Yao / Chaos, Solitons and Fractals 24 (2005) 627–630

From (13), we find   að0; n þ 1Þ ¼ bð0; n þ 1Þ

o1 q  o o1 r  o 1 r  þoðq  r Þ  o q  þo2   að0; nÞ ¼L : bð0; nÞ

!

að0; nÞ bð0; nÞ

 ¼

qo o1~ro o1 ~ 1 ~r þ o~ q~r o ~ q þ o2

Thus, the system (16) can be written as       að0; n þ 1Þ 0 q ¼J ¼ JLn : bð0; n þ 1Þ ar r tn

!

að0; nÞ bð0; nÞ



ð17Þ

When M = 1, the system (17) is just the TC hierarchy, when M > 1, the system (17) is a format of the TC hierarchy. As a reduction case, taking q = r, n = 1, a = 1, the system (17) reduces to the multi-component KdV equation qt ¼ qxxx  q  qx :

Acknowledgment The author would like to thank Professor Yufeng Zhang for his guidance.

References [1] [2] [3] [4] [5] [6] [7] [8]

Tu Guizhang. J Math Phys 1989;30:330. Guo Fukui. Acta Math Phys Sin 1999;19:507. Zhang Yufeng, et al. Math Pract Theory 2003;33:109. Zhu Zuonong, et al. Phys Lett A 1997;235:227. Zhang Yufeng. Phys Lett A 2003;317:280. Tsuchida T, Wadati M. J Phys Soc Jpn 1999;69:2241. Tsuchida T, Wadati M. Phys Lett A 1999;257:53. Guo Fukui, Zhang Yufeng. J Math Phys 2003;44:5793.