Derived thermodynamic design data for heat pump systems operating on R 506

Derived thermodynamic design data for heat pump systems operating on R 506

Heat RecoverySystemsVol. 2, No. 5/6. pp. 463 to 473. 1982 Printed in Great Britain. DERIVED 0198-7593,82:050463-11503.t~ 0 Pergamon Press Ltd THERM...

359KB Sizes 0 Downloads 35 Views

Heat RecoverySystemsVol. 2, No. 5/6. pp. 463 to 473. 1982 Printed in Great Britain.

DERIVED

0198-7593,82:050463-11503.t~ 0 Pergamon Press Ltd

THERMODYNAMIC DESIGN PUMP SYSTEMS OPERATING

DATA FOR ON R506

HEAT

T. O. OMIDEYI, S. DEVOTTA, F. A. WATSON and F. A. HOLLAND Department of Chemical Engineering, University of Salford, Salford M5 4WT, U.K.

(Received for publication 18 May 1982) Abstract--The theoretical Rankine coefficient of performance and the compression ratios have been presented for heat pump systems operating on R506. These values are listed in tabular form for temperature lifts of 10-75°C and for condensing temperatires of 15-130~C in 5°C increments. Several graphs have been drawn to illustrate the feasible operating range for R506 heat pump systems. The derived thermodynamic data can be used for the rapid preliminary design of heat pump systems operating on R506.

NOMENCLATURE (COPh

(CR) Hx Pco PEV Tco

To Tev Ts q~x

Rankine coefficient of performance of the heat pump system compression ratio of the heat pump enthalpy per unit mass at state condition X pressure in the condenser of the heat pump system pressure in the evaporator of the heat pump system temperature of the working fluid in the condenser temperature of the heat sink fluid from the heat pump system temperature of the working fluid in the evaporator temperature of the heat source fluid to the heat pump system entropy per unit mass at state condition X

dimensionless dimensionless [kJ kg- 1] [bar] [bar] [K or ~C] [K or C ] [K or C ] [K or C ] [kJ kg- 1 K - 1].

INTRODUCTION

R506 Is ONE of the potentially suitable working fluids for heat pump systems. It is an azeotropic mixture of 55.1~o R31 (CH2CIF) and 44.9% Rl14 (C2C12F4) by weight. The critical temperature and pressure are 142.0°C and 51.64 bar, respectively. Physical data for R506 are listed in Table 1. DERIVED THERMODYNAMIC DESIGN DATA

The operation of a mechanical vapour compression heat pump approximates closely to the Rankine cycle. The ideal Rankine cycle is illustrated in Fig. 1 which is a plot of pressure P against enthalpy per unit mass H for R506. With reference to Fig. 1, the theoretical Rankine coefficient of performance of a heat pump can be defined as

(COP)R =

HD1 -- HD3 HDI -- Hs2

(1)

Since the compression from $2 to D1 is isentropic ~bDl = ~bs2 where 4' is the entropy per unit mass. The enthalpy per unit mass of the superheated vapour HD1 can be approximately related to the enthalpy per unit mass of the saturated vapour at point D2 by the equation HD1 = HD2 + (t~S2 -- t~D2)Tco.

(2)

Equations (1) and (2) can be used to calculate (COP)Rvalues for any desired condensing temperature Tco and gross temperature lift (Tco - TEV) from the saturation properties of the chosen working fluid. 463

-3

13.750 15.979 18.471

1298.4 1284.7 1270.8 1256.5

1211,8

2 7989

q 2943

3 8543

4.4857

5.1q25

5.9811

6.8598

95

20

2~

~O

?q

40

4~

8.50'~

1180.4

10.O8OO

11.3731

12.7889

55

60

65

70 1129.6

1147.1

1164.O

1196.4

7.8323

B.9018

50

24.403

1227.2

52.278

46.310

40.957

36.134

31.795

27.897

21.271

124].9

}1.779

10.O43

1125.2 ] ~]1.9

1 982~

7.167

vapour

kq m

2 3628

1~.~

1 iq,~id

density

5

1 651]

O

('0

b,]r

P

C

CO

]O

o

T

O.24463

0.24558

0.24611

0.24635

0.24634

0.24589

O.24509

0,24411

0.24285

0,24121

0.23959

184.682

189.338

193.692

197.861

201.829

205.612

209.222

212.688

216.Oli

219.199

222.242

225.184

227.985

0,23762

2]0.706

O.23527

2~3.285

KJ kg -I

9.6549

8.7683

7.9330

7.1496

6.4171

5.7360

5.1057

4.5241

3.990

3.5025

3.0557

2.6524

2.2896

1.9630

1.6720

MJ m -3 vapour

]atent heat

O.23297

0.23040

bar m3kq -I

PV

Table 1. Physical data for R506

365.330

363.580

361.673

359.702

357.604

355.457

353,210

350.913

348,537

346.111

343.632

341.104

338.540

335.935

333.285

KJ kg -I

enthalpy of saturated vapour mass

fluid

of

5.4147

5. 2816

5. 1628

5.0541

4.9547

4.8635

4.7796

4.7017

4.6294

4. 5621

4.4996

4. 4408

4. 3863

4.3345

4. 2866

kg Mj-I

working

>

c~

>

>

?

C

©

4~

1111.4 ]092.7

14.324~]

16.~)13

75

38.5527

42.O731

45.7888

47.3352

51.6680

125

130

]35

137

141.7

critical

35.2746

29.3505

]20

26.6903

]05

32.2124

956.8

24.2165

IOO

I15

983.3

21.9202

95

551.O

640,I

7]9.6

821.3

857.7

896.3

927.8

1OO7.7

1030.8

1052.5

19.7929

90

1073.1

17.8227

85

liquid

bar

C

-3

551.O

300.279

276.687

233.629

2OO.O10

174.116

152.882

134,834

119.443

106.O51

94.252

83.832

74.573

66.324

58.913

vapour

density kg m

PCO

TCO

0.09377

0.15764

0.16549

0.18008

0.19275

O.20259

0.21070

0.21768

0.22346

0.22835

0.23257

0.23610

0.2]900

0.24126

O.24315

bar m3kg-I

PV

O.OOO

64,206

72.364

89,152

103.631

115.287

125.496

134.568

142.778

150.158

156.979

163.287

169.163

174.665

179.841

-I KJ kg

O.OOO

19.2796

20.O221

20.8285

20.7272

20.0733

19.1861

18.1444

17.O538

15.9244

14.7956

13.6887

12.6150

11.5845

10.5950

-3 MJ m vapour

latent heat

Table 1. C o n t i n u e d

321.316

358. 325

361.331

365.931

369. 339

371.270

372.416

372.926

372.948

372,592

371.924

3?0.997

369.834

368. 505

366.990

KJ kg -I

enthalpy of saturated vapour -1

15. 5749

13.8190

ii. 2168

9.6496

8.6740

7.9684

7.4312

7.0039

6.6597

6.3703

6.1242

5.9114

5.7252

5. 5605

kg MJ

mass of working fluid

t~

5

t~

o

<=

~L

6.58

5.79

5.16

4.66

4.24

40.0

45.0

50.0

55.0

60.0

3,31

7.59

35.0

75.0

8.95

30.0

3.88

10.85

25.0

3.57

]3.68

20.0

70.0

18.47

65.0

27.94

2.799

15.0

15.0

ar)

I0.0

C

3.35

3.62

3.93

4.29

4.71

5.23

5,87

6.66

7.69

9.06

10.96

13.86

18,62

28.02

3.294

20.0

3~39

3.67

3.98

4.34

4.78

5.31

5.95

6.76

7.81

9.19

11.16

14.08

18.92

28.80

3.854

25.0

3.44

3.70

4.02

4.39

4.84

5.37

6.03

6.85

7.90

9.32

11.29

14.22

19.22

29.36

4.486

30.0

3.47

3.74

4.07

4.45

4.90

5.44

6.11

6.93

8.01

9.44

11.43

14.48

19.64

29.65

5.193

35.0

3.50

3 .~8

4.11

4.49

4.95

5.50

6.17

7.02

8.10

9.53

11.59

14.71

19.77

30.09

5.981

40.0 ......

3.53

3.82

4.15

4.54

5.00

5.54

6.23

7.07

8.15

9.63

ii.71

14.74

19.88

29.92

6.860

45.0

3.57

3.85

4.19

4.58

5.04

5.61

6.29

7.14

8.26

9.77

11.83

14.97

20.12

30.50

7.832

50.0

8.902

55.0

10.080

60.0

11.373

65.0

Table 2. Theoretical R a n k i n e c o e f l i c i e n t s o f p e r ~ r m a n c e ( C O l ' l ~ f o r a r a n g e o f l i ~ s a n d condensinglemperaluresfor R506

3.67

3.97

4.32

4.72

5.22

5.81

6.53

7.44

8.60

I0.17

12.45

15.77

21.50

32.44

12.789

70.0

c~

"v, >

© ©

C

6.53

5.81

5.23

4.73

4.32

3.97

3.67

45.0

50.0

55.0

60.0

65.0

70.0

75.O

]O.18

30.0

8.58

]2.34

25.0

7.42

I%.67

35.0

20.90

]5.0

20.0

40.0

~1.74

10.0

l,~a:) ,.

7q.O

|4.325

"~0

o

(Tco_TEv) O c ~

~ O

3.6R

3.98

4.33

4.75

5.23

5.82

6.54

7.44

8.64

10.19

12.40

15.54

20.99

30.96

16.OO1

80.0

3.68

3.99

4.35

4.76

5.25

5.84

6.56

7.50

8.67

10.26

12.37

15.69

20.82

32.47

17.82]

85.0

3.68

3.99

4.34

4.76

5.24

5.83

6.58

7.48

8.68

10.18

12.39

15.48

21.30

32.57

19.793

90.0

3.68

3.98

4.33

4.74

5.23

5.84

6.56

7.49

8.62

10.19

12.26

15.77

21.4|

32.35

21.920

95.0

Table 3. Theoretical Rankine coefficients of performance

3.66

3.97

4.32

4.74

5.25

5.84

6.59

7.47

8.67

10.18

12.58

16.06

21.77

33.78

24.217

IOO.O

[ C O P ) R for

3.62

3.91

4.26

4.68

5.16

5.75

6.44

7.34

8.42

10.O5

12.24

15.41

20.81

31~32

26.690

105.O

3.58

3.88

4.23

4.64

5.12

5.68

6.40

7.25

8.48

10.O5

12.19

15.50

20.95

30.59

29.351

I IIO.O

3.53

3.83

4.17

4.58

5.04

5.62

6.29

7.24

8.41

9.93

12.13

15.42

20.35

33.32

32.212

115.O

3.45

3.74

4.08

4.46

4.93

5.46

6.20

7.08

8.19

9.71

11.83

14.70

20.87

31.26

35.275

120.O

3.35

3.63

3.94

4.33

4.76

5.34

6.02

6.85

7.96

9.42

11.28

14.84

19.81

29.57

38.553

125.O

a range of lifts and condensing temperatures for R506

3.19

3.44

3.75

4.09

4.55

5.07

5.69

6.49

7.51

8.74

10.92

13.61

17.99

27.11

42.073

130.O

O

--4

3

O°C

I

23.983

27.633

~2. 138

75.0

18.049

20.499

2 ~ 478

70.0

13.779

15.427

17.416

65.0

10.646

11.777

I 3. 107

60.0

8.32]

9.100

10.006

55.0

6.577

7.112

7.731

50.0

5.249

5.621

6.043

45.0

4.233

4.486

4.776

40.O

3.442

3.812

35.0

3.618

3.074

2.823

30.O

2.334

2.942

2.5OO

25.O

2.413

2.050

1.944

20.0

].631

].995

1.695

15.0

1.662

].412

]0.0

1.377

2.7~9

].394

25.0

3.854

20.0

3.294

15.O

!lTco_TevlOc~

",~bar:

21.006

16.036

12.390

9.684

7.654

6.109

4.926

4.005

3.285

2.716

2.263

].898

1.603

1.362

4.486

30.0

18.564

]4.343

11.211

8.860

7.072

5.703

4.637

3.803

3.145

2.619

2.198

1.855

1.576

1.347

5.193

35.0

16.521

12.g13

10.206

8.146

6.569

5.342

4.381

3.622

3.0]7

2.531

2.137

1.816

1.552

1.333

5.981

40.0

14.8]0

11.705

9.343

7.534

6.127

5.024

4.154

3.461

2.903

2.451

2.082

1.780

1.529

1.321

6.860

45.0

]3.364

10.667

8.602

6.995

5.737

4.743

3.951

3.315

2.798

2.378

2.032

1.746

1.508

1.310

7.832

50.0

8.902

55.0

10.080

60.0

Table 4. Compression ratio [CRI for a range of lifts and condensing temperatures for R506

11.373

65.0

9.367

7.745

6.422

5.413

4. 569

3.882

3.318

2.851

2.463

2.138

1.864

1.633

1.437

1. 269

12.789

70.0 ©

7/

"r

r~ -<

>.

>

© ~r

2.395

2.759

3.193

35.0

40.0

45.0

5.118

6.063

7.226

8.675

60.0

65.0

7O.O

75.0

3.717

2.088

30.0

4.348

1.829

25.0

55.0

1.609

20.0

50.0

1.421

5

15.0

14.1

75.0

1.260

at)

lo.o

C

4.624 5.410 6.368 7.543

5.717

6.772

8.072

2.598

2.675

4.857

2.276

2.333

3.973

2.002

2.043

4.152

1.768

1.798

2.980

1.567

1.587

3.432

1.394

1.407

3.082

1.244

1.251

3.567

]7.823

85.0

16.001

80.0

7.072

6.008

5.135

4.412

3.812

3.309

2.885

2.527

2.223

1.964

1.740

1.548

1.382

1.237

19.793

90.0

6.654

5.687

4.887

4.221

3.665

3.195

2.799

2.462

2.175

1.927

1.714

1.530

1.370

1.230

21.920

95.0

6.283

5.399

4.664

4.049

3.530

3.092

2.720

2.402

2.129

1.894

1.691

1.513

1.359

1.223

24.217

I00.0

5.950

5.140

4.462

3.891

3.408

2.998

2.648

2.347

2.087

1.863

1.668

1.498

1.348

1.218

26.690

i05,0

5.652

4.907

4.279

3.747

3.297

2.912

2.581

2.295

2.049

1.834

1.647

1.483

1.339

1.212

29.351

II0.0

5.386

4.696

4.113

3.619

3.176

2.832

2.519

2.249

2.013

1.807

1.627

1.470

1.330

1.207

32,212

115.0

5.142

4.504

3.963

3.499

3.102

2.758

2.462

2.204

1.979

1.782

1.609

1.457

1.322

1.202

35.275

120,0

Table 5. Compression ratio(CR) f o r a r a n g e ofliftsand condensing temperatures ~ r R506

4.922

4.331

3.825

3.390

3.015

2.691

2.409

2.163

1.948

1.759

1.592

1.444

1.314

1.197

38.553

125.0

4.726

4.174

3.699

3.290

3.937

2.629

2.361

2.126

1.919

1.737

1.576

1.433

1.306

1.193

42.073

130.0

o

3

470

T. O, OMIDEYI. S. D E v O ] l a . F. A. VV.A]so\ and F. A. }]()l I ",',J~

60 50 40 30

T = tO0°C

20

D3 ./

.

_S_ o,-

75°C

D2.

D/

50"C i

5

---

,4

25°C

IO°C

3 - -

100

- -

----Sli

;2

I

1

150

200

EnthoLPy

L

250

I

I

H,

kJ

~00

per unit

moss

i

L

400

353 kg '

Fig. 1.

20 Too

100°C

=

Pco = 24.22 bet

o -15 o

E E z .

.

.

.

.

.

.

L-

9

I

o

I

g

I I

- I0 ~_

&

So

u

I I I I

I I0

20

30

40

Temperature l i f t I 0

,

,

50

60

( Too T[v),

oP

70

°C

I I I i J IO 20 50 40 50 Temperoture l i f t (TD-T s) °C, with 2~)°C drop in heot exchongers

Fig. 2.

Derived thermodynamic design data

471 2C~

20 ,

Condensing temDeroture

Tco = 7 0 % Tco = IO'

13

E v 0

IC Too = 7 0 o c

g

\J

o 5 c

c~

p-

i I L i I 20 30 40 50 GO Temperature L i f t (Tco-T~v), *C

i 70

Fig. 3.

~

.~

Temperature Lift.

I"~

(TC°~oiiilnliii°iemperature

t5

~

E_

Tco= iOoC

~c ~o

V "'\ ~

5

8

0

i 2

[

[

Fig. 4. H.R.S. 2 5 6

I

~

3 4 5 6 Compression r a t i o (CR), dimensw~nkess

I 7

472

T . O . OMIDEYL S. DEVOTTA. F. A, WATSON and F. A Ho~_t ,'~>,T)

( Tcc -

"6

TEv) = 25oc

9

( Too- TEv ) = 40"C

g

\

I.-

\ 3

30

50

I

i

I

70

90

I tO

Condensing temperature Tco,

130

°C

Fig. 5.

Ln

E

~o o

o

~30

50 70 90 Conclet~sinQt~atufe

Fig. 6.

I I0 Fco, oC

130

Derived thermodynamic design data

473

The theoretical Rankine coefficient of performance (COP)R and the compression ratio (CR), which is the ratio of the corresponding pressures in the condenser and evaporator Pco/PEv, have been calculated for R506 for temperature lifts of 10-75°C and for condensing temperatures of 15-130°C in 5°C increments. All the basic calculations have been taken from published tables Eli. Tables 2 and 3 list the calculated (COP)R values and Tables 4 and 5 the calculated (CR) values. Figures 2-6 are plotted from the data listed in the tables. DISCUSSION OF DERIVED DESIGN DATA Figure 2 shows the variation of the compression ratio (CR) and the theoretical Rankine coefficient of performance (COP)R with gross temperature lift (Tco - TEV) for a condensing temperature Tco of 100°C and a condensing pressure Pco of 24.2 hour. The effective temperature lift will be reduced by 20°C if there is a temperature drop of 10°C in each of the heat exchangers. Figure 3 shows that (CR) values for a given temperature lift are extremely sensitive to the condensing temperature. In contrast, the (COP)R values are almost independent of the condensing temperature. Figure 4, which is a plot of (COP)R against (CR) for various temperature lifts, implies that relatively high coefficients of performance are only possible for relatively low temperature lifts and compression ratios. Figure 5 shows that for a given temperature lift (COP)R initially increases with condensing temperature and then decreases after reaching maximum in the region of 90°C. The maximum is more pronounced for lower temperature lifts. Figure 6 shows the variation of compression ratio with condensing temperature. Figure 6 clearly indicates the upper limit of the possible temperature lifts resulting from any practical limit to the compression ratio. REFERENCE

1. ASHRAEHandbook 1977Fundamentalsand Product Director)'.American Societyof Heating, Refrigerating and Air Conditioning Engineers, New York, pl6.41 (1977).