Hera RecorerySystems Vol. 2. No. 4. pp. 317 to 328. 1982
0198-7593 82 040317-12S03.00 0 Pergamon Press Lid
Printed in Great Britain.
DERIVED THERMODYNAMIC DESIGN DATA FOR HEAT PUMP SYSTEMS OPERATING ON R216 J. A. JIANG, S. DEVOTTA, F. A. WATSON, and F. A. HOLLAND Department of Chemical Engineering, University of Salford, Salford M5 4WT. U.K. Abstract--The theoretical Rankine coefficients of performance (COP)R and the compression ratios have been presented for heat pumps operating on R216. These values are listed in tabular form for temperature lifts of 10-75"C and for condensing temperatures of 10-160~C in 5~C increments. Several graphs have been drawn to illustrate the feasilbe operating range for R216 heat pump systems. The derived thermodynamic data can be used for the rapid preliminary design of heat pump systems operating on R216.
NOMENCLATURE
(COP)R Hx
Rankine coeffÉcient of performance of a heat pump system, dimensionless enthalpy per unit mass at state condition X [kJ ks- 1] pressure in the condenser of a heat pump [bar] pressure in the evaporator of a heat pump system [bar] temperature of the working fluid in the condenser [K or °C] temperature of the heat sink fluid from the heat pump system [K or °C] temperature of the working fluid in the evaporator [K or °C] temperature of the heat source fluid to the heat pump system [K or *C] wetness fraction of vapour, dimensionless entropy per unit mass at state condition X [kJ kg- 1 K - i]
PCO PEx
Too TD TEV
Ts X
INTRODUCTION
R216, WHICH HAS the chemical formula C3C12F6, hexafluorodicholoropropane, is one of the potentially useful working fluids for high temperature heat pump systems. Its critical temperature and pressure are 453.1 K and 27.55 bar, respectively. Table 1 presents an abridged version of some physical data for R216.
50.0
-
20.0 t~
10.0
J
<5.0
100°C
/
t~
2.0--
~.,~
50°C
1.0-0.5
I
100
/
t
sM
I
150 200 250 Enthalpy per unit mass H, kJ kg-I
Fig. 1. Pressure against enthalpy per unit mass for R216. 317
I
500
8. 7630 8. 9001 9.0432
259.136 262.434 265.718
1.4168 1.6234 1.8502
114.117 1 12.359
110. 580
0.11159 0.11242
0.11317
12.415
14.446 16.732
1504.5 1489.8 1475.1
1.3854
1.6243
1.8936
50.0
55.0
45.0
8.6316
255.851 1.2295 115.853
0.11067
10.613
1518.7
1.1745
40.0
8.5040
252.569 1.0604
117 • 592
0.10970
9.018
1532.8
0.9892
35.0
8.3785
269.307 0.9092
119.352
0.108b3
7.618
1546.6
0.8275
30.0
8.2595
266.018 0.7741
121.073
0.10747
b. 394
1560.4
0.b871
25.0
8.1408 2 6 2 . 781
0.6545
122.838
0.10623
5. 328
1573.9
0.5660
20.0
8.0278
239.521
4.407
1587.3
0.4624
15.0
0.5490
0.10364
3.b12
IbO0.7
0.3744
10.0 124.567
128.097
0.10223
2.937
1613.8
0.3003
0.10493
•
7.9151
0.3073
129 8 90
0.10075
2.360
1626.8
236.298
kg MJ
0.4564
-3 MJ m
126.341
-I
7. 8066
kJ kg
-i
mass of working fluid
233.077
5.0
m3kg -I
enthalpy of saturated vapourl k8 kg
0.3763
0.2383
0.0
llquid
--3ar vapour
latent heat
7.6988
bar
°C
PV
229.890
PCO
TCO
-3 density kg m
Table 1. Physical data for R216
z
9.1905 9.3464 9.5104 9.6805 9.8641 10.0562 10.2626 10.6811 10.7187 10.9776 II.2575 11.5695
272. 300 275.574 278.849 282.104 285.351 288. 577 2 9 1 . 8 O0 294. 991 298. 141 301.280 304.362
2.3699 2.0631 2. 9814
3.3232 3.8910 4.0854 4.5062 4.9621 5.346I 5.9246 6.4489
106.993 105.148 103.300 101.378 99.441 97.441 95.410 93.295 91.095 88.829 86.434
O. 11435 O. 1 1 4 8 1
0.11516 0.11541 O. 11554 O. 11552 U. 11539 O. 11493 O. 11645 0.1 1412 0.11342
22.150 25.328 28.862 32.781 37.117 41.927 47.230 53. 187 58.687 66.696 74.610
1444.7 1429.0 1412.9 1396.5 1379.8 1362.5 1344.7 1326.4 1307.5 1287.9 1267.6
2.5330
2.9079
3.3237
3.7831
4.2884
4.8434
5.4501
6.1127
6.8343
7.6115
8.4622
65.0
70.0
75.0
80.0
~5.0
90.0
95.0
100.0
105.0
110.0
115.0
kg MJ
269.013
-3 MJ m
2.0990
-I
10B.808
kJ kg
-I
mass of working fluid
O. 11382
bar m3kg -I
enthalpy of saturated vapour -I kJ kg
19 • 291
vapour
latent heat
1460.1
liquid
PV
2.195b
bar
°c
-3
60.0
PCO
TCO
density kg m
Table I (cont.)
r~
t~
0
0
330.0U5
12.0275
51. 023 0.09104
235. 729
970.0
21.4613
165.0
32~.373
11.6588 56.481
0.09552
206. 622
1020.2
19.1177
160o0
326.333
11.1632 01. 127
0.09905
182.623
1058.0
18.0884
155.0
324.045
10.5960 05.288
0.10209
162.296
1091.0
16.5680
150.0
321.553
9.9961
09.017
0.10456
144.835
1122.1
15.1441
145.0
13. 8060
318.905
9.3769
72.432
0.10676
129.458
1150.1
13.8214
140.0
13.2268
316.160
8.7624
75. 004
0.10866
I 15.~98
1170.4
12.5907
135.0
12.7276 313.323
8.1604
18.570
0.11013
103.862
1200.9
11. 4386
19.5991
17.7052
16.3594
15.3166
14.4891
12.2954
11.9126
310.395
130.0
of
kg MJ -I
7.5717
81.331
0.11140
93.098
1224.2
10.3715
125.0
-3
mass
working fluid
307.402
MJ m
enthalpy of saturated vapour -i kJ kg
6.9915
83. 945
0.11250
83.358
i
1246.4
9.3781
-I
120.0
kJ kg
vapour
liquid
bar
latent heat
°C
bar m3kg -I
PV
PCO
-3
TCO
density kg m
Table 1 cont.)
> Z
>
¢D
4.19
55
4.24
4.76
-
4.70
5O
5.40
75
5.33
45
6.19
-
6.12
4O
7.23
70
7.13
35
8.6O
-
8.49
3O
10.53
3.81
10.39
25
13.45
65
13.25
20
18.28
6O
18.O5
15
27.99
0.566
0.462
27.60
20.0
15.O
IO
(Tco-TEv)
c
i I
-
-
3.49
3.86
4.29
4.82
5.46
6.28
7.33
8.73
10.71
13.66
18.62
28.47
0.687
25.0
-
3.21
3.52
3.89
4.34
4.87
5.53
6.35
7.42
8.84
10.83
13.83
18.81
28.87
0.827
30.O
2.96
3.23
3.55
3.93
4.38
4.93
5.59
6.43
7.52
8.96
II.OO
14.O4
19.17
29.29
0.989
35.0
9.19
11.30
14.42
19.74
30.19
1.385
45.0
2.98
3.26
3.59
3.97
4.43
3.00
3.28
3.61
4.00
4.47
4.98 i 5.03
!
5.66 [ 5.72
I
6.51 I 6.58
7.61 I 7.70
9.08
11.14
14.26
19.39
29.88
1.175
40.0
3.O1
3.30
3.64
4.03
4.51
5.08
5.77
6.66
7.78
9.31
11.42
14.65
19.94
30.58
1.624
50.O
3.O3
3.32
3.66
4.06
4.54
5.12
5.83
6.72
7.88
9.40
11.58
14.80
20.19
30.98
1.894
55.0
3.O4
3.33
3.68
4.09
4.58
5.16
5.88
6.79
7.94
9.52
11.68
14.96
20.41
31.33
2.196
60.0
3.O5
3.35
3.70
4.11
4.61
5.20
5.93
6.84
8.03
5.60
11.81
15.12
20.65
31.69
2.533
65.0
3.O5
3.36
3.71
4.13
4.63
5.24
5.97
6.91
8.09
9.69
11.92
15.28
20.87
32.10
2.908
70.O
75.0
3.06
3.36
3.73
4.15
4.66
5.27
6.02
6.95
8.16
9.78
12.O4
15.44
21.13
32.49
3.324
Table2. TheoreticalRankinecoefficientsof ~r~rmance(COP)R ~rarangeofliftsandcondensingtemperatures ~rR216
3.05
3.37
3.73
4.17
4.68
5.30
6 .O5
7 .OO
8.23
9.86
12.15
1 .61
21.37
32.92
3.783
80.0
3.05
3.37
3.74
4.17
4.70
5.32
6.08
7.04
8.28
9.93
12.26
15.25
21.51
33.20
4.288
85.0
iJ
o
g~
o
~n
f-
0
,t~
--4
~
,~
0
~
~
0
~
~
I,-'
0
~
0
~~ ' " ~,o 8
0
1-~
~
I'~
~o
0'~
~,,,.4
,~.
"
h~
t~
h "~
~.
0 0 ,.-4
U'I
~.~
o"
o
b
~
8
~
b
•-
b
~
b
tD
~
,-4 o
.u~
~.~
~
~
~
..~
~
~
~
~
~
~
~
~
~
~
,~.
~
~'~
"-.4
CO
0
~
~
.
~'~
u'~
~
0
U'~
0
~
~
0
~
ij
~
i' ~
~
k-~
0
I~o
.~
.
°
~
~D
I~0
~
0
~
b
0
~ t~
8t~
•
I,~
~
I~
,.,
b
-~
0
~
0
~,~
e~ k,~
I.o
0 e~ .~-
~ 0
~
0
~ ~
~
~
~
.,~
~
Co
~
0
o
~0
~ ~
h "~
h~
~
~o
0
..4
h~
~
~
u~
~
b e-
k,~
~
~
.~
lm ~--'
~
~.~
~
~
"-4
~'~
~
~
,~,
-~
~
~
0
~
0
~
D
3,899
5.092
6.739
9.047
4.160
5.505
7.390
10.O92
14.0OO
19.781
3O
35
40
45
5O
55
.
3.026
3.185
25
-
-
-
-
.
7O
75
.
24.214
17.137
65
-
2.375
2.472
2O
60
1.885
1.940
15
12.354
1.512
0.566
20.0
1.540
0.462
15.0
IO
(Tco-TEV) - C ' , ~
",~bar)
c
.
-
29.393
20,803
14.996
10.982
8.180
6.182
4.733
3.673
2.883
2.288
1.835
1.486
0.687
25.O
11.777
8.900
6.815
5.288
4.151
3.294
2.642
2.139
1.748
1,440
0.989
35.O
35.398
25.053
42.319
29.951
21.591
18.O60 15.811
13.225
9.851
7.445
5.700
4.423
3.472
2.750
2.210
1.789
1.462
0,827
30.0
Table 4. Compression ratios
i
12.464
9.544
7.405
5.813
4.614
3.700
2.996
2.448
2.O16
1,674
1.4OO
1.385
45.O
22,143
35.560 30.238
25.634
18.772i16.494
13.983
10.567
8.O91
6.278
4.928
3.911
3.137
2.540
2.075
1.709
1.419
1.175
40.0
13.O45 11.736
9.212
25.961 i22.544 19.753
19.338 J17.O36 15.125
14.614
5.864
4.748
3.879
3.196
2.653
2,219
1.869
1.585
1.352
2.196
60.0
7.945 ! 7.312
6.306
5.058
4.095
3.345
2.756
2.288
1,914
1.612
1.369
1.894
55.O
11.190 10.122
8.682
6.815
5.409
4.339
3.513
2.870
2.364
1.963
1.642
1.383
1.624
50.O
17.449
13.539
10.628
8.435
6.7661
5.478
4 - 475
3.687
3.O61
2.561
2,157
1 . 828
1.559
1,338
2.538
65.O
9.684
7.767
6.289
5.137
4.232
3.514
2.940
2,476
2.099
1.790
1.536
1.324
2.908
70.0
I
8,878
7.188
5.872
4.837
4.O17
3.360
2.830
2.399
2.046
1.7551
1.514
1.312
3,324
75.O
15.543
13.945
12.201 11.O69
Pco/PEvfor a range of lifts and condensing temperatures for R216
12.599
10.105
8.181
6.684
5.506
4.572
3.824
3.221
2,731
2.329
1.998
1.723
1.494
1.301
3.783
80.0
11.454
9.274
7.576
6.241
5.18~
4.33~
3.651
3,092
2.64~
2.265
1.953
1,693
1.475
1.290
4,288
85.O
to
=
O
=
o
ar)
1.457
1.666
1.912
2.206
2.558
2.982
3.496
4.124
4.896
5.853
7.049
8.559
10.474
15
2O
25
3O
35
4O
45
5O
55
6O
65
7O
75
9.629
7.932
6.586
5.509
4.640
3.934
3.355
2.878
2.482
2.1 2
1.874
1.640
1.441
1.271
5.450
4.843
1.280
95.0
90.0
IO
(Tco-TEv)-C~, ~
~
~<~Co °C
8.896
7.387
6.179
5.204
4.412
3.763
3.228
2.284
2.413
2.102
1.839
1.616
1.425
1.262
6.113
iOO.O
8.259
6.909
5.819
4.933
4.207
3.609
3.113
2.698
2.350
2.056
1.807
1.594
1.411
1.254
6.834
105.O
7.694
6.481
5.494
4.686
4.020
3.467
3.005
2.618
2.290
2.O12
1.775
1.572
1.397
1.245
7.611
IIO.O
7,205
6.108
5.210
4.469
3.854
3.341
2.910
2.546
2.237
1.973
].747
1.553
1.384
1.238
8.462
115.O
125.O
6.769
5.773
4.953
4.271
3.702
3.225
2.822
2.479
2.187
1.936
1.721
1.534
1.372
1.232
6.387
5.477
4.724
4.095
3.567
3.120
2.742
2.418
2.141
1.903
1.697
1.518
1.363
1.226
9.578 10.372
120.O
6.041
5.210
4.516
3.934
3.442
3.024
2.667
2.362
2.099
1.871
1.674
1.503
1.352
1.220
[1.439
130.O
5~734
4.971
4.330
3.788
3.328
2.936
2.600
2.310
2.060
1.842
1.654
1.488
1.343
1.214
[2.591
135.O
145.O
150.O I
155.O
160.O
5.457
4.753
4.158
3,653
3.224
2.854
2.536
2.261
2.022
1.816
1.633
1.474
1.333
1.208
5~208
4.556
4.003
3.531
3.127
2.779
2.477
2.216
1.990
1.790
1.615
1.460
1.324
1.203
4.985
4.380
3.864
3.421
3.040
2.711
2.424
2.177
1.958
1.767
1.598
1.448
1.316
1.199
4°78]
4.218
3.735
3.319
2.959
2.647
2.376
2.138
1.929
1.744
1.581
1.437
1.309
1.194
4~5981
4.O71
3.618
3.226
2.885
2.591
2.330
2,103
1.901
1.724
1.566
1.427
1.302
1.190
[3.821 15.144 16.569 18.O88 19.718
140.O
Table 5. Compression ratios Pco/Pev for a range of lifts and condensing temperatures for R216
/
4~
325
Heat pump systems operating on R216
THERMODYnAMiC
DERIVED
DATA
The operation of a mechanical vapour compression heat pump approximates closely to the Rankine cycle. The Rankine cycle mainly involves four sequential operations, namely, isobaric evaporation, isentropic compression, isobaric condensation and isenthaipic expansion. In general, isentropic compression of saturated vapour results in superheating of the vapour. However, the thermodynamic properties of R216 imply that partial condensation should result on isentropic compression of the saturated vapour over certain pressure ranges. The ideal Rankine cycle with partial condensation is illustrated in Fig. 1, which is a plot of pressure P against enthalpy per unit mass H for R216. With reference to Fig. I, the theoretical Rankine coefficient of performance of a heat pump can be defined as (COP)R -
HI)I -
HI)3
Ht)t
Hs2
-
(1)
The entropy ~bD~of the two-phase mixture at D1 can be related to the entropies of the saturated liquid q5,)3 and of the saturated vapour qSD2by the equation q5,,I = ¢bD3x + ~b,)2(l -- X)
(2)
|55
Tco= IO0°C
1
Pco= 6.115 bor
~:50 ._E
"o
25 =
e 6 E
2o ~o
5
~c
g
O_
~4
15
,-~
o= t~
E
~R 3
8 o
I IJ
0
I
IO
t ....
I
I
I
20 30 40 50 Temperature lift (Tco-TEv}, °C
I
60
I0
70
I ....
I
I
1
I
I
O
IO
20
30
40
SO
Temperature lift (To-Ts), °C wii~ 20°C drop in heot exchangers.
Fig. 2. Compression ratio and theoretical Rankine coefficient of performance against temperature lift for R216 at a condensing temperature of 100°C and a condensing pressure of 6.113 bar.
326
J.A.
JIAN(;
el al.
where x is the liquid fraction of the wet vapour at Dt. Since the compression fl'om $2 to D1 is isentropic 4't, = 4's2.
(3~
The mass liquid fraction x can be calculated from equations (2) and (3). The enthalpy of the two phase mixture at D1 can then be calculated from the enthalpies of the saturated liquid Ho3 and of the saturated vapour HD2 from equation (4). HDI
=
HD3X + HD2 (1 -- x).
Equations (1)-(4) can be used to calculate
(COP)e values
(4) for any desired condensing
temperature Tco and temperature lift (T(,o- TFv) from the saturation properties of R216. The theoretical Rankine coefficients of performance (COP)R and the compression ratios Pco/P~v have been calculated for R216 for temperature lifts of 10-75°C and for condensing temperatures of 15-160°C in 5°C increments. All the basic thermodynamic properties of R216 used in the calculation have been taken from published tables [1]. Tables 2 and 3 list the calculated (COP)R values and Tables 4 and 5, the calculated Pco/PEv values. Figures 2-6 are plotted from the data listed in the tables. DISCUSSION OF DERIVED THERMODYNAMIC DESIGN DATA
Figure 2 shows the variation of the compression ratio Pco/P~:_vand the theoretical Rankine coefficient of performance (COP)~ with temperature lift (Too - T ~ j for a condensing temperature 7"(,0of 100°C, and a condensing pressure Pco of 6.113 bar. If there is
,5
1
/
,ooc
14
i
Condensing temperature
13
-28 26
'
-- 24 ~n
12
--22
E "5
20
&
0 = 30%
II
2 E :6
rco = $o*c
~
,~
9-
Tc0 =
16
o 8--
14
~. "5
o_
-#
7-
12
6-
io
~
E
rco = 14o*c / oE
L)
3p-
~ }
2
-!2
~
_k.._lo 0
Io
20
3o
~=~ro~e
40
50
nift (~-rEv),
60
7o
oc
Fig. 3. Variation of compression ratio and4heorctieal Rankinc coefficient of performance with temperature lift and condensing temperature for R216.
327
Heat pump systems operating on R216 20 0)
E = 50%
I0
r~
~O-TEv) = 5 0 % o I----
.1
I
2
t 3
1
I 4
Compression folio P / P , CO IrV
I
! 5
t
6
dimensionless
Fig. 4. Theoretical Rankine coet~cient of performance against compression ratio showing the influence of temperature lift and condensing temperatures for R216. 18
Temperofure lift
(Too-TEv)= 20°C
\
( reo- rEv) = 3o*c ~ IO!
\
"5 e I-
o
6
=~
4 21
-
(r~o- r~v) = 4 o o c
(reo rcv) = 5o*c \
-
~o
40
(rco ~ ) = 6 0 % \
I 60
[ 80
L I00
1 120
Condensing temperature Tco,
I 140
I 160
*C
Fig. 5. Theoretical Rankine coefficient of performance against condensing temperature for various temperature lifts for R216.
J A. JIAN(; ,'t a,'.
328
r6 15
E
Temperature lift (T~T~,,) : 7 0 o c
12
8°o o65
,
4
40
60
80 t00 "120" Condensing temperature to' °C
140
160
Fig. 6. Compression ratio against condensing temperature for various temperature lifls for R216.
a temperature drop of 10°C in each of the heat exchanger, the effective temperature lift will be reduced by 20°C. Figure 3 shows that Pco/PEv values for a given temperature lift are extremely sensitive to the condensing temperature. In contrast, the (COPJRvalues are almost independent of the condensing temperature. Figure 4. which is a plot of (COP)R against Pco/PLv for various temperature lifts. implies that relatively high coefficients of performance are only possible for relatively low temperature lifts and compression ratios. Figure 5 shows that (COP). increases almost linearly with the condensing temperature for all temperature lifts and then decreases after reaching maxima in the region of Too = 115°C. The maximum is more pronounced for lower temperature lifts Figure 6 shows the variation of compression ratio with condensing temperature for various temperature lifts. Figure 6 clearly indicates the upper limit of the possible temperature lifts resulting from any practical limit to the compression ratio. REFERENCES 1. H. M. Meacock. Refrigerution Processes. p. 170, P e r g a m o n Press, Oxford [1979),