Design for reliability in hostile environment

Design for reliability in hostile environment

Pergamon Press Printed in U.S.A. Microelectronics and Reliability Vol. 15 Supplement pp. 75-85, 1976 DESIGN F O R R E L I A B I L I T Y IN H O S T I...

466KB Sizes 0 Downloads 78 Views

Pergamon Press Printed in U.S.A.

Microelectronics and Reliability Vol. 15 Supplement pp. 75-85, 1976

DESIGN F O R R E L I A B I L I T Y IN H O S T I L E E N V I R O N M E N T BY Leo Fiderer Singer Instrumentation Los Angeles, California USA M e c h a n i s m s and e l e c t r o m e c h a n i c a l d e v i c e s a r e o f t e n s u b j e c t to f a i l u r e m e c h a n i s m s d i f f e r e n t f r o m the ones of c o n v e n t i o n a l e l e c t r o n i c c o m p o n e n t s . In t h i s p a p e r , the t h e o r i e s of r e l i a b i l ity, v i b r a t i o n , s t r e n g t h of m a t e r i a l s and p r o b a b i l i s t i c d e s i g n a r e t r a n s l a t e d i n t o p r a c t i c a l g u i d e l i n e s to p r e d i c t t h e f a i l u r e r a t e s a n d t h e r e l i a b i l i t y of s u c h d e v i c e s when s u b j e c t e d to v a r i ous t y p e s of h o s t i l e e n v i r o n m e n t . Introduction M a n y e l e c t r o n i c s y s t e m s i n t e r f a c e with e l e c t r o - m e c h a n i c a l d e vices or m e c h a n i s m s , such as solenoids or special s w i t c h e s . T h e s e d e v i c e s a r e e x p e c t e d to w i t h s t a n d the h a r m f u l e f f e c t s of c o l d and h o t temperature extremes, shock, vibration, acoustic noise, wear, corros i v e a t m o s p h e r e , and o t h e r h o s t i l e e n v i r o n m e n t s . T h e r e l i a b i l i t y of t h e e n t i r e s y s t e m o f t e n d e p e n d s on t h e p r o p e r m e c h a n i c a l f u n c t i o n of t h e s e devices. C o n v e n t i o n a l h a n d b o o k s t h a t a r e u s e d to c a l c u l a t e f a i l u r e r a t e s and M T B F - f i g u r e s , s u c h as M I L - H D B K - 2 1 7 B , a r e e l e c t r o n i c c i r c u i t o r i e n t e d a n d d e a l p r i m a r i l y with e l e c t r i c a l s t r e s s e s of e l e c t r o n i c c o m ponents, such as r a t e d voltage v e r s u s applied voltage. M e c h a n i c a l s t r e s s e s a r e d e a l t with by u s i n g g e n e r a l i z e d a p p l i c a t i o n f a c t o r s f o r c e r tain environment categories. F i g u r e 1 i l l u s t r a t e s a t y p i c a l t a b l e of s u c h environment application factors, taken from MIL-HDBK-217B. H o w e v e r , t h e s e a p p l i c a t i o n f a c t o r s do n o t a l w a y s r e f l e c t t h e t r u e s t r e s s e s e x p e r i e n c e d by t h e d e v i c e in u s e . A c t u a l m e c h a n i c a l s t r e s s e s a r e a f u n c t i o n of v e h i c l e s i z e and s p e e d , c o m p o n e n t m o u n t i n g and g e o m e t r y , r e s o n a n c e s and m a n y o t h e r p a r a m e t e r s . E a c h one of t h e s e p a r a m e t e r s is a r a n d o m v a r i a b l e . C o n v e n t i o n a l m e t h o d s of s t r e s s c a l c u l a t i o n s a r e i n s u f f i c i e n t to p r o v i d e r e a l i s t i c a n s w e r s a b o u t t h e p r o b a b i l i t y of f a i l u r e . P r o b a b i l i s t i c d e s i g n t e c h n i q u e s w i l l y i e l d b e t t e r r e s u l t s .

75

76

L. Fiderer

Vol. 15, Supp.

L

rE, INVIRONVIIIITAL FACIDR BASED ON D~VIROIa'~AL SERVICE CONDITION E n v ~ t

'

S~t.~z

rE

G' B

0.2

sF

0.2

%

Z.o

AI

4.0

Naval, S h e l t e r e d

NS

~.0

Gbsm/nd, Mobile

GM

~.0

Naval, Unsheltered

NU

5.0

~me,

AU

6,0

ML

i0.0

Gax~, Benign s~ace

nx~t Fixed

~ e ,

Inhabited

t~ite~

Missile, Imam~.h

FIGURE 1 E x c e r p t f r o m M I L - H D B K - 217B

Ii

Vol. 15, Supp.

Design for Reliability in Hostile Environment

Probabilistic Design A recently developed design philosophy, named "probabilistic d e s i g n " , m a k e s a d i s t i n c t i o n b e t w e e n d e t e r m i n i s t i c and r a n d o m v a r i a b l e s ( s e e r e f e r e n c e l). A d e t e r m i n i s t i c v a r i a b l e has a definite r e a l value that will always be the s a m e u n d e r a l l c o n d i t i o n s . F o r e x a m p l e , a c e r t a i n m o d e l a u t o m o b i l e h a s f o u r w h e e l s , and t h e n u m b e r " f o u r " is the d e t e r m i n i s t i c d e sign variable. On the o t h e r h a n d , t i r e p r e s s u r e , a v e r a g e s p e e d , o r b a t t e r y s t a t e of c h a n g e a r e a l l c o n s i d e r e d r a n d o m v a r i a b l e s , s i n c e with a l a r g e n u m b e r of a u t o m o b i l e s of the s a m e m o d e l , a c o n s i d e r a b l e v a r i a t i o n in t h e v a l u e of t h e s e v a r i a b l e s w i l l be e n c o u n t e r e d . E a c h o n e of t h e s e r a n d o m v a r i a b l e s is d e f i n e d by two n u m b e r s , n a m e l y the m e a n v a l u e and i t s s t a n d a r d d e v i a t i o n . M o s t p h y s i c a l p a r a m e t e r s e n c o u n t e r e d in m e c h a n i c a l s y s t e m s a r e r a n d o m v a r i a b l e s , s u c h a s t e n s i l e s t r e n g t h , m o d u l u s of e l a s t i c i t y , power supply voltages, p h y s i c a l d i m e n s i o n s and e n v i r o n m e n tal temperatures. In s o m e i n s t a n c e s , with p r e c i s i o n m a c h i n e d p a r t s , t h e t o l e r a n c e s p r e a d is s o n a r r o w t h a t t h e s t a n d a r d d e v i a t i o n is c o n s i d e r e d n e g l i g i b l e c o m p a r e d to t h e m e a n v a l u e of the d i m e n s i o n , and the d i m e n s i o n is t r e a t e d as d e t e r m i n i s t i c v a r i a b l e to s i m p l i f y the c o m p u t a t i o n s . H o w e v e r , in m o s t c a s e s , t o l e r a n c e s in d i m e n s i o n s , r e s i s t o r v a l u e s o r s u p p l y v o l t a g e s h a v e a d e f i n i t e e f f e c t on t h e r e l i a b i l i t y of t h e s y s t e m . H o s t i l e e n v i r o n m e n t , with i t s wide r a n g e of p o s s i b l e v a l u e s , is m o s t c e r t a i n l y a r a n d o m v a r i a b l e , and i t s e f f e c t s c a n b e s t be e v a l u a t e d by p r o b a b i l i s t i c m e t h o d s . R a n d o m v a r i a b l e s can i n t e r a c t with e a c h o t h e r o r with d e t e r m i n i s t i c v a r i a b l e s by a d d i t i o n , s u b t r a c t i o n , m u l t i p l i c a t i o n o r d i v i s i o n . The r e s u l t of t h e s e o p e r a t i o n s , w h e r e at l e a s t one of t h e o p e r a n d s is a r a n d o m v a r i a b l e , is a l s o a r a n d o m v a r i a b l e with i t s own m e a n v a l u e and s t a n d a r d d e v i a t i o n . A d e t a i l e d d i s c u s s i o n of the m a t h e m a t i c s of r a n d o m v a r i a b l e s is f u r n i s h e d in R e f e r e n c e s (1) and (2). T h e b a s i c p r i n c i p l e s and d e f i n i t i o n s , a s t h e y a r e u s e d in t h e p r o b a b i l i s t i c d e s i g n m e t h o d s , a r e summarized below. T h e i l l u s t r a t i o n in F i g u r e 2 s h o w s the p r o b a b i l i t y d i s t r i b u t i o n c u r v e f o r a r a n d o m v a r i a b l e X, a l s o c a l l e d p r o b a b i l i t y d e n s i t y f u n d t i o n . ( P D F ) . T h e m e a n v a l u e , p_, is t h e a v e r a g e of a l l t h e v a l u e s t h a t t h e variable X may assume. ItXis often, but n o t n e c e s s a r i l y , t h e v a l u e of X at t h e m a x i m u m p r o b a b i l i t y d e n s i t y , and is d e f i n e d by t h e e q u a t i o n : co

,--co

77

78

L. Fiderer

Vol. 15, Supp

~

X

0,~"

/ \

0.40,3

/

O.Z 0.1

X

J Probability

FIGURE 2 Density Function for Random with Normal Distribution

Variable

TABLE I MEAN VALUE

ALGEBRAIC FUNCT I ON

STANDARD DEVIATION

~dition: Z=X+Y

Oz=V4÷

~z=~x+~

Subtraction: Z = X - Y

~z

= Bx

- ~y

Multiplication: Z = X Y

Bz = Bx By

'

22

22

22

Division:

~z = )'t/Fy

~z - ~ y

Basic Operations with Random Variables with Normal Distribution

+

Vol. 15, Supp.

Design for Reliability in Hostile Environment

T h e s t a n d a r d d e v i a t i o n , o - , is a m e a s u r e of t h e d i s p e r s i o n o f a l l t h e p o s s i b l e v a l u e s o f X. A l X r g e v a l u e o f c~ i n d i c a t e s a w i de s p r e a d x b e t w e e n t h e h i g h and l ow v a l u e s of t h e r a n d o m v a r i a b l e . The standard d e v i a t i o n is d e f i n e d by t h e e q u a t i o n ,

~x =~(~- ~x)2f(x)dx "~ - C O

A t h i r d p a r a m e t e r , s o m e t i m e s u s e d in p r o b a b i l i s t i c d e s i g n a s a m e a s u r e o f a r a n d o m v a r i a b l e , is t h e c o e f f i c i e n t of v a r i a t i o n . This is the d i m e n s i o n l e s s r a t i o b e t w e e n t h e s t a n d a r d d e v i a t i o n and t h e m e a n v a l u e . :

provided,

x

,

of c o u r s e ,

that the m e a n value is not z e r o .

T h e i l l u s t r a t i o n in F i g u r e 2 s h o w s a G a u s s i a n o r " n o r m a l " d i s tribution curve, defined by the equation,

i p(x)

=

~ ~2~)

- (X-~x) 2/20 .2 e

A l t h o u g h t h e r e a r e r a n d o m v a r i a b l e s with a v a r i e t y of s h a p e s f o r d i s t r i b u t i o n c u r v e s , m a n y a c t u a l p a r a m e t e r s m a y be a p p r o x i m a t e d b y t h e d i s p e r s i o n of a n o r m a l d i s t r i b u t i o n , s o t h a t in p r a c t i c a l c a l c u l a t i o n s a n o r mal distribution may be assumed without excessive error. R a n d o m v a r i a b l e s w i t h n o r m a l d i s t r i b u t i o n c a n be e a s i l y a l g e b r a ically manipulated. S o m e of t h e b a s i c o p e r a t i o n s a r e s h o w n in T a b l e I, w h e r e X an d Y a r e t h e r a n d o m v a r i a b l e o p e r a n d s , and Z i s t h e r a n d o m variable result. A n o t h e r f e a t u r e of G a u s s i a n d i s t r i b u t i o n c u r v e s is t h e r e a d y availability of probability tables defining the area under the curve bet w e e n g i v e n v a l u e s of s t a n d a r d d e v i a t i o n . T h e s e t a b l e s a r e u s e f u l f o r t h e c a l c u l a t i o n o f r e l i a b i l i t y a s s h o w n in t h e l a t e r s e c t i o n s of t h i s p a p e r

Reliabilit,y versus "Factor of Safety" In c o n v e n t i o n a l s t r e s s c a l c u l a t i o n s , t h e s t r e n g t h of t h e m a t e r i a l , as l i s t e d in h a n d b o o k s , i s c o m p a r e d w i t h t h e w o r k i n g s t r e s s i n d u c e d by t h e e x p e c t e d l o a d . If t h e s t r e n g t h of t h e m a t e r i a l e x c e e d s t h e w o r k i n g s t r e s s b y a s u b s t a n t i a l r a t i o , it i s a s s u m e d t h a t a c o m f o r t a b l e f a c t o r of s a f e t y e x i s t s . It is d e f i n e d a s f o l l o w s : strength F a c t o r of S a f e t y = FS = l o a d s t r e s s

79

80

L. Fiderer

In usual design

practice,

Vol. 15, Supp

the goal is a factor of safety of I. 5 or more.

F o r e x a m p l e , if a m i s s i l e c o m p o n e n t , m a d e of 7075 a l u m i n u m a l l o y , w i t h a l i s t e d t e n s i l e s t r e n g t h of 70, 000 p s i i s s u b j e c t e d to an a n t i c i p a t e d l o a d s t r e s s o f 4 2,000 p s i d u r i n g l a u n c h , c o n v e n t i o n a l a n a l y s i s w o u l d a s s u m e t h a t t h e f a c t o r of s a f e t y is 70, 000 p s i 1. 67 FS = 42, 000 p s i = P r o b a b i l i s t i c d e s i g n , h o w e v e r , w o u l d c o n s i d e r 70, 000 p s i and 42, 000 p s i as t h e m e a n v a l u e s of t h e s t r e n g t h and t h e l o a d , a n d w oul d a s k t h e q u e s t i o n : " H o w s a f e a r e we r e a l l y ? " T h e a n s w e r w oul d p r i m a r i l y d e p e n d on t h e v a l u e of t h e s t a n d a r d d e v i a t i o n f o r e a c h o f t h e s e r a n d o m variables. F o r m a n y m e t a l s , t h e c o e f f i c i e n t of v a r i a t i o n of s t r e n g t h is 0 . 0 8 , s o t h a t t h e r a n d o m v a r i a b l e of s t r e n g t h i s g i v e n b y Ps : 70, 000 ps i ,

o-s = 0 . 0 8 Ps = 5, 600 p s i

The load stress is a function of the acceleration during launch, the mass supported by the component, its geometry and dimensional tolerances. Every one of these parameters is a random variable, so that a considerable spread between high and low values can be exPected. Let us assume that in this example, the calculation of the load stress from these random variables resulted in a coefficient of variation of 0.2, and P L : 42, 000 p s i ,

crL = 0 . 2 P L = 8, 400 p s i .

If we p l o t t h e d i s t r i b u t i o n c u r v e s of b o t h r a n d o m v a r i a b l e s , s t r e n g t h an d l o a d , we find a r e g i o n of o v e r l a p in w h i c h t h e l o a d s t r e s s would exceed the strength. T h e a r e a of t h i s o v e r l a p is t h e p r o b a b i l i t y of f a i l u r e . In o r d e r t o c a l c u l a t e t h e r e l i a b i l i t y o f t h i s l o a d / s t r e n g t h c o m b i n a t i o n , we d e f i n e t h e d i f f e r e n c e b e t w e e n s t r e n g t h and l o a d as a n e w r a n d o m v a r i a b l e D: D:S-L

We e s t a b l i s h t h e m e a n v a l u e and s t a n d a r d d e v i a t i o n of t h i s n e w v a r i a b l e a c c o r d i n g to t h e o p e r a t i o n s i n d i c a t e d in T a b l e h PD = ~ s -

PL = 28,000 psi;

CrD= ~

+ 2=

10,100 p s i

N e x t , a p l o t of t h e n o r m a l d i s t r i b u t i o n c u r v e f o r t h i s r a n d o m v a r i a b l e is e s t a b l i s h e d a s s h o w n in F i g u r e 4. T h e a r e a u n d e r t h e n e g a t i v e p o r t i o n of t h i s c u r v e i s t h e p r o b a b i l i t y of f a i l u r e , and t h e p o s i t i v e p o r t i o n is t h e p r o b a b i l i t y of s u c c e s s , which is a l s o the r e l i a b i l i t y . T o find t h e n o r m a l i z e d v a l u e of t h e c o o r d i n a t e at t h i s c r o s s - o v e r l i n e b e t w e e n s u c c e s s and f a i l u r e , we e s t a b l i s h t h e r a t i o :

Vol. 15, Supp.

~L /cL)

81

Design for Reliability in Hostile Environment

/Is

/

LOAb

STRENGTH

i

42,ooo

0

70,000 P$~

psi FIGURE 3

D i s t r i b u t i o n C u r v e s f o r S t r e n g t h and L o a d S t r e s s

/a-L) P(~:)

2

/

D-S-I_

JzD

z8,ooO = 2 . 7 T

0

FIGURE Distribution

Curve

for Excess

o"D

4 Strength

over

Load

I

look

82

L. Fiderer

PDI~D

Vol. 15, Supp

: 28, 0 0 0 / 1 0 , 1 0 0 : 2 . 7 7

From a table of normal distribution, If, we find the values of "Probability "Probability of Failure".

similar to the one shown in Table of Success" P(s) and P(f), the

F r o m t h e t a b l e , we find t h a t t h e v a l u e s f o r P ( s ) and P(f) c o r r e s p o n d i n g to 2.77cr a r e 0. 9972 and 0. 0028 r e s p e c t i v e l y .

Thus, with the probabilistic design concept, instead of a questionable factor of safety, a reliability of 99.72% for the part during the launch was established. Random

Vibration

Environment

By definition, random vibration is a random variable. In many equipment specifications for airborne devices, this type of vibration is now indicated instead of sinusoidal vibration environment. The environment is usually specified in the form of an "acceleration spectral density curve", sometimes also called "power spectral density curve", such as the one shown in Figure 5. In this case, the mean value is zero and the standard deviation is represented by the square root of the area under the curve. The standard deviation is in this case called RMS - (Root Mean Square) acceleration, expressed in gravity units as multiples of g. T w o a s p e c t s of t h e e f f e c t of t h e r a n d o m v i b r a t i o n e n v i r o n m e n t h a v e to b e c o n s i d e r e d f o r t h e r e l i a b i l i t y of e l e c t r o - m e c h a n i c a l d e v i c e s . O n e p r o b l e m is t h e o n e of f a t i g u e , w h e r e b y a s t r u c t u r a l m e m b e r m a y f a i l as a r e s u l t of r e p e a t e d s t r e s s r e v e r s a l s i n d u c e d by v i b r a t i o n . T h i s p r o b l e m h a s b e e n d i s c u s s e d by t h e a u t h o r in a p a p e r p r e s e n t e d at t h e 1975 C a n a d i a n SR E S y m p o s i u m and is e x t e n s i v e l y c o v e r e d in R e f e r e n c e s 3, 4 an d 5.

Another problem, not less significant, is the ability of a spring loaded electrical contact to maintain electrical continuity during vibration. The same applies to solenoids, relays and magnetically energized actuators. Probabilistic techniques of analysis are helpful in obtaining the reliability of these devices, too. M a n y of t h e s e d e v i c e s c a n be r e p r e s e n t e d by a s i n g l e - d e g r e e - o f f r e e d o m s y s t e m f o r t h e p u r p o s e s of v i b r a t i o n a n a l y s i s , s u c h as t h e o n e in t h e d i a g r a m in F i g u r e 6. In t h i s c a s e , t h e s p r i n g i s m a i n t a i n e d in a c o m p r e s s e d c o n d i t i o n and f o r c e s t he c o n t a c t , r e p r e s e n t e d b y t h e m a s s M, a g a i n s t t h e f r a m e , w h i c h in t h i s c a s e is p a r t of t h e m o v i n g f o u n d a t i o n . As l o n g as t h e p r o d u c t of t h e m a s s t i m e s t h e a c c e l e r a t i o n d o e s n o t e x c e e d t h e f o r c e in t h e c o m p r e s s e d s p r i n g , c o n t a c t w i l l b e m a i n t a i n e d . T o d e t e r m i n e t h e p r o b a b i l i t y of c o n t a c t b e i n g m a i n t a i n e d , we f i r s t e s t a b l i s h t h e v a l u e f o r RMS a c c e l e r a t i o n b y t a k i n g t h e s q u a r e r o o t of t h e area under the acceleration spectral density curve. This random variable

Vol. 15, Supp.

Design for Reliability in Hostile Environment

tlJ>.

z~N (3-1uP, ,j~J tajuJ o0. ol/)

CURVE SHAPE AE THROUGH AP

'•REQUIRED CURVE

.f 20

I00 IOOO 2 0 0 0 FREQUENCY ( H z )

RANDOM

VIBRATION

Random

ACCELERATION TEST CURVE

POWER SPECTRAL, DENSITY Wo ( G ~ H , , |

,~E AF AG AH

0.02 0.04 0.06 0.1 0

C O M P O SI TE G-RMS MINIMUM

AJ AK

0,2 0 0.30

5.4 7.6 9.3 12.0 16.9 20.7

AL AM AN . . . .

0.40 0.60 I .00 I ,50

23.9 29.3 37.9. 46.4

[

"ENVELOPE

Vibration

83

FIGURE 5 Specification from

MIL-STD-810C.

I .~--C

FRAME FIGURE Schematic

Representation

--I

--]ct F

.6

of Switch Contact for Vibration

Analysis.

84

L. Fiderer

Vol. 15, Supp

is multiplied by the mass of the contact (another random variable) by the formula from Table I. Note that the mean value of the force random variable is zero in this case. Next we compare this variable with the force of the compressed spring by the method shown in the preceding section of strength versus load stress. The area of overlap is the probability of loss of contact and the reliability is again obtained by the equation

R = P(s) = 1 - P(f) F o r e x a m p l e , i f w e o b t a i n a v a l u e f o r P ( f ) = 0. 000015, t h e n t h e r e l i a b i l i t y w o u l d b e 0. 9 9 9 9 8 5 , m e a n i n g t h a t d u r i n g a n y t i m e i n t e r v a l o f s u f f i c i e n t l e n g t h , c o n t a c t w o u l d b e m a i n t a i n e d 99. 9 9 8 5 % of t h e t i m e . Tolerances

and

Simplifications

In many instances, the value of the standard deviation in a parameter is not specified. A maximum and minimum value is mentioned instead. Without loss of too much accuracy, the following simplifications can be made for use in the random variable calculations.

~ x =' ( X m a x + X m i n ) / 2 crx = ( X m a x - X m i n ) / 6 In the normal distribution curve, 99.74% of the area under the curve lies between the values of (/~ - 3(y) and (g + 3o'), so that the error would not be significant. The same procedure can also be applied to the use of dimensional tolerances with fabricated parts. The calculations for the values of standard deviations of products and quotient of random variables according to Table I can also be simplified. If the coefficient of variation C V is less than 0. 2, a fair approximation can be obtained as follows:

Multiplication:

%y

+.y%

Divis ion: '22

2 2 + #y~x

Vol. 15, Supp.

Design for Reliability in Hostile Environment

REFERENCES

New

i. York:

E.B. Haugen, Probabilistic Approaches John Wiley (1968)

to Desi6n.

2. E.B. Haugen and P. H. Wirsching, Probabilistic Design, A Realistic Look at Risk and Reliability in Engineering, Machine Design, Series of 5 Articles April 1975 through June 1975, Vol. 47, No. 9 through 14

3. L. F i d e r e r , Dynamic Environment F a c t o r s in Determinin~ Electronic Assefnbl~ Reliability, P r o c e e d i n g s of the 1975 Canadian SRE Reliability Symposium, Ottawa, 10 May 1975 4. A. Sorensen, J r . , Product Reliability and Random F a t i ~ e . IEEE Transactions on Reliability, Vol. R-20, No. 4, pp. 244-248, November 1971 5. E . B . Haugen and P. H. Wirsching, Probabilistic Design Alternatives to M i n e r ' s Cumulative Damage Rule, Proceedings of the Annual Reliability and Maintainability Symposium, Philadelphia, Pennsylvania, 1973, Index Serial No. 1102 6. MIL-HDBK-217B, U. S. Department of Defense Reliability P r e d i c t i o n of Electronic Equipment. 20 September 1974

85