Chaos. Soliton~ & Fractals Vol. 4. Nos 8/'9, pp. 1251-1258. 1994 Copyright © 1994 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0960-t)779/9457,00 + .~10
Pergamon
0960-0779(94)E0090-C
Transverse Nonlinear Optics: Introduction and Review L. A. L U G I A T O Dipartimento di Fisica dell" Universit~ di Milano, via Celoria 16, Milano 20133, Italy
A b s t r a c t - - T h e characteristic features of the field of Transverse Nonlinear Optics are briefly illustrated, as an introduction to this special issue of Chaos, Solitons & Fractals.
1. I N T R O D U C T I O N
The analysis of unstable phenomena in nonlinear optical systems has been the object of intensive studies, both theoretical and experimental, over the last 15 years (see, for example [1-7]). More recently, the main focus in this field shifted gradually from purely temporal effects to spatial and spatio-temporal phenomena, especially spontaneous pattern formation in the structure of the electromagnetic field in the planes orthogonal with respect to the direction of propagation. Even though Transverse Nonlinear Optics is basically a newly born field, the existence of such effects is well known since the earliest days of laser physics. As a matter of fact, in order to obtain the simple Gaussian T E M ~ transverse structure that is desired for most applications, one introduces apertures or other means into the laser cavity. Otherwise, the system generates spontaneously more or less complex patterns. These phenomena were, however, mostly considered as undesirable or difficult to be understood and controlled, even if there were pioneering works which analysed several interesting aspects of these effects [8-22]. In the last decade, and especially in the last few years, the interest in these phenomena emerged with evidence and activated systematic investigations in this field. It is by now clear that the spatial and spatio-temporal effects in the transverse structure are similar to the phenomena of pattern formation, turbulence, etc., that are familiar in other fields such as, for example, hydrodynamics, nonlinear chemical reactions, or biology. These phenomena represent the general object of study of Haken's synergetics [23] and of Prigogine's theory of dissipative structures [24] and can now be studied in optics, in systems whose dynamics is governed by the fundamental laws of radiation-matter interaction. In the case of the laser, the analogy with hydrodynamics can be substantiated also formally [16, 25, 26]. G i n z b u r g - L a n d a u [26-32], or Kuramoto-Sivashinsky [33, 341, or Newell-Whitehead [32] type equations have been derived and used to describe spatio-temporal phenomena in optics. As a matter of fact, optics addressed the issue of pattern formation and transformation much later than the more traditional fields of nonlinear chemical reactions and, especially, hydrodynamics. This fact is due to the circumstance that, until recently, it was not 'natural' to realize optical systems with a large aspect ratio; this is, however, no longer true now, for example in the case of high-power lasers or surface-emitting lasers. On the other hand, optics presents at least two special features that are interesting and stimulating. First, 1251
1252
1,. \. 1.~,,1\1,,
optical systems are very fast and havc a large frequency bandwidth: hcncc t h e \ lend themselves naturally for application, for instance to t e l e c o m m u n i c a t i o n s and to informati~m technology. O n e relevant example of the useful application of optical structures is alrcad~ provided hy the soliton transmission in optical fibres. The invcstigations of t|-ans~crsc nonlinear optics offer, in principle, the possibility of an approach to parallel optical information processing, bv encoding information in the transverse Stltlcturu e l lhc electromagnetic field. The researches in this direction arc at a rather initial slag~. (suc 135-4fl1) but therc is a definite evolution, and some i)f Ihc papcrs in this issuc prmid< ~ interesting hints in thai direction. The second special featurc is that ~ptical s\,stems ha~c the tendencv to display interesting q u a n t u m effects at roonl t c m p e r a t u r c . Recent \ c a r , have witncssed the start of investigations on q u a n t u m effects in trans'~erse optical SlltlCttllt.,,, (sec [41-451; these researches ure relevant from the viewpoints ~1 l:undamcntal quanlttln mechanics, of q u a n t u m noise reduction {squeezing) and, hol)efully. ~,l applications, l~,J example to noiseless transmission of images. The mechanism which gives rise to pattern formation is. as usual, Ihc combination ,~i nonlinearity and of coupling bctween the different spatial poinls. In the case ~d optical systems, this coupling ix provided b \ diffraction, which plays the same role as diflusioJ~ in nonlinear chcmical reactions and in biolog}. In lhc paraxial approximation ~hich p, currently uscd in these studies, diffraction is described by the transverse l,aplaeian, lh;fl i,. the sum of the second derivatives ~ith respect to the t,ao transverse spatial variable,, Both stationary and dwmmical patterns can be formed in this way. The kind of pattcln d e p e n d s crucially on the type of nonlinearity which may he, for cxample, quadratic in file case of parametric d o w n - c o n v e r s i o n and second harmonic generation, cubic in Z' ~' media (four-wave mixing), or the saturable nonlinearity which governs the singlemodc gain in lasers. The nonlinearity determines the c o m b i n a t i o n of wave xectors in the transverse plane, which in turn produces the structures that c m c r g c . General reviews of the field of transverse nonlinear optics can he found in rcfs ]4~ 51 ] The investigations have covered both theoretical and experimental aspects, and haxc c o n c e r n e d the case of passive (i.e. without population inversion) systems [3{L 31. 35. 3i~. 39. 52-92], the case of active systems such as lasers [25 2g. 3 2 - 3 4 , 37, 38, 4(l, g3 12L)t and svstems with gain which does not arise from population inversion {e.g. p h o t o r e l r a c l i \ e s , optical parametric oscillators) [ 13()- 137]. Thc sxstcms that have been studied can I~c. ~crv roughly speaking, dividcd inI~ l\~,~ classes. The first class is c o m p o s e d of systems which display translaticmat svnlnlctr\, t | c n c u , ii thcrc are mirrors, they must be plane mirrors: if there arc driving fields, they must bu plane waves. Thesc systems allox~, the study of the onset of t~atlerns from tt honlogcilcotl~, state, that is. the s p o n t a n e o u s breaking of the translational svmnletr\. This p h c n o m c m m arises w h e n e v e r the h o m o g e n e o u s staiional-\ slatc beconles tillstablc against the grov~lh ~)t small i n h o m o g e n e o u s perturbations, for example small-amplitude waves with a nltidulaiud sinusoidal configuration. It may happen that, when the wavelength of the modulation lies in an appropriate range, Ihe perturbation grm\.s instead of dying away. In this casc !hr, svstcm forms s p o n t a n e o u s l y a pattern which, according to the nature of the instahilit\, max be stationary or dwmmical. C o m m o n examples of patterns which may a p p e a r arc sn-ipc~ (also called rolls due to the similarity with the R a y l e i g h - B e n a r d instability in fluids) :lnd hexagons. Each of these configurations may display defects [2{} 22], for example dish,c> tions in roll patterns [137] or p e n t a - h e p t a defects in hexagonal patterns [7S]. Also, lhL' h o m o g e n e o u s configurations can show defects called optical phase singularities or optical \ortices [28. It2, 134. 13S, 13g] centred at points of zero intensit\ el the electric lichl in the transverse plane.
Introduction and review
1253
The second class of systems which have been extensively investigated is characterized by the inclusion of spherical mirrors; this is the standard situation for optical systems contained in resonant cavities. In this case the system has no translational but, at most, rotational symmetry in the transverse plane. The spherical mirrors confine the radiation field in the region which surrounds the axis of the system, so that the field configuration is boundary-dependent. The dynamics of the system is governed by the nonlinear interaction and competition among the different discrete modes (of G a u s s - H e r m i t e or G a u s s Laguerre type) of the resonator. When the Fresnel number of the cavity is at most of order unity, instead of the periodic (in space) patterns met in the first class of systems, one finds localized structures composed by a limited number of peaks and, possibly, phase singularities. These structures arise from the contribution of a reduced set of cavity modes. The variety of different configurations, both of stationary and of dynamical nature, that can emerge in this way is spectacular. On the other hand, when the Fresnel number is very large the behaviour of the system becomes more and more boundary-free and similar to the case of the first class. The field configurations arise from the contributions of a very large number of cavity modes, so that the modal composition itself becomes basically irrelevant. Space-time chaos is one of the common scenarios in this limit [130]. Of course, there are cases of systems which are intermediate between the two classes, for example systems with plane mirrors driven by external field with a Gaussian or a flat-top profile [90]; and there are systems, the behaviour of which is governed by propagation, in combination with diffraction, without any infuence from feedback such as that provided, for example, by a cavity resonator (e.g. see [140-142]). Laser arrays have also been the object of extensive investigations (e.g. see [143, 144]). Even if the list of references in this article is long, it is in no way complete and, certainly, the selection of papers is influenced by my personal taste and limits of information. Hence I apologize for all omissions. This special issue collects contributions from most leading groups active in the field of transverse nonlinear optics; the quality of the papers and the coverage of subjects ensure that this volume provides a rather faithful description of the state-of-the-art in this domain. Undeniably, the field of optical patterns developed mainly in Europe. This was in part the cause and in part the consequence of the illuminated support provided by the Programs of the Commission of the European Communities to the researches on Optical Instabilities, Opti.cal Chaos and Optical Patterns. An especially important role was, and is, played by the E S P R I T Basic Research Project 3260 TOPP (Transverse Optical Patterns) and 7118 T O N I C S (Transverse Nonlinear Optics). A significant proportion of the papers in this issue arise from research activities in the framework of TONICS.
Acknowledgements'--I am grateful to Professor M. S. E1 Naschie and Dr A. Boehm for their kind invitation to organize this issue. I thank the support of the TONICS Project and, especially, Drs Ingemar Hussla, Manuela Pinheiro and Brendan Hawdon of the ESPRIT Basic Research staff, for their wise and continuous assistance and guidance provided to the partners of the projects TOPP and TONICS. Thanks are also due to Drs Massimo Brambilla, Fabrizio Castelli, Alessandra Gatti, Irene Marzoli, Marco Pinna, Roberta Pirovano, Franco Prati, Alice Sinatra and Martino Travagnin for their continuous help in the preparation of this issue.
REFERENCES
1. N. B. Abraham, L. A. Lugiato and L. M. Narducci, editors, Special issue on instabilities in active optical media, J. Opt. Soc. Am. B2 (1) (1985). 2. D. K. Bandy, A. N. Oraevsky and J. R. Tredicce, editors, Special issue on nonlinear dynamics of lasers, J. Opt. Soc. A m . B5 (5) (1988). 3. F. T. Arecchi and R. Harrison, editors, Instabilities and Chaos in Quantum Optics'. Springer, Berlin (1987).
I254
I . A. l_~(;~.\J~
4. N. B. Abraham, F. "1. Arecchi and L. A. [,ugmto. editors. Instahilitic~ amt ( h a o s m C)uamum ¢)pms H Plcnmn, New York ([998). 5. 1.. A. Lugiato, Theory of optical bistability, m f'rogrexs in Optic.s, Vol. XXI. edited b~ E. Woll. p p 0~; H North-Holland, Amsterdam (I~184). 0. N. B. Abraham, P. Mandel and [,. M. Narducei, l)ynanfica[ instabilities and pulsations m laser~,, m f'rowc~, m Oplicv. Vol. XXV, edited by E. Wolf, p. I ff. North-Holland, Amsterdam (1988). 7. L. A. l.ugiato and L. M. Narducci. Multistability, chaos and spatiotemporal dynamics, m l.}oldwm.nta[ ,%'.stem~ in Ouantunl Optics. edited by J. Dalibard. J. M. Raimond and J. Zmn-Justin. l.es Houchcs Session LIII. p. ~?45 ff. Else,,ier, Amsterdam i 1992). ,',. A. F. Suchkov, Effects of inhomogencitics on tile opcration regime of solid-state lasers..~,ox t'hv~..It: I1' 22 1020 1031 (1966), u. ,I. A. Fleck Jr and R. K. Kidder, Stability of coupled-mole laser equations, .1. a/*[)[. I)/l~,'s. 1{6, 2327 I lUt~5) 111. 1. M. Belousova, G. N. Vinoktn-ov, O. B. Danilox alia N. N. Rozanov. Mode intcraetiOll in a gas last:l \sith spherical mirror resonators, ,~,'ot'. Pill's. J E l l ' 25, 761 7h7 (1967). I1. P. W. Smith, Simultaneous phase locking of longitudinal and transverse lascl l]lOdcs..-tp[d t'/n~ I ~'*l 13. 235 237 (1968). 12. D. H. Auston, Forced and spontaneous phase locking of the transverse modes ot a Ite Nc laser, l t . k t .1 (_)uantum Eleetron. QE-5,471 473 (1968), 13. S. Zeiger, E. Fradkin and Y. L. Klimontovich. Wm'c and f:hwttmtion I'rotcsscs i/t I.ascr~ leningrad Sl¢ttc University. Leningrad (1969L 14. R. G. Allakhverdyan, A. N. Oracvsky and A. F. Suchkov. Influence ol v, axeguidc properties ot a p ~e iunction on the coherent emission of gallium arsenide laser diodes. Soc Phvs.-Semievml. 4, 277 281 (19711L 15. V. E. Kuzin and A. F. Suchkov, Operation of a laser with a planar resonator lit high pumping lexcl. ~,,,~ ] Quantum Electron. 2, 236 230 (It172). 10. S. A. Akhmanov. R. V. Khoklov and A. P. Suchorukov. Self-focusing, sclf-defocusmg ~.tlld self-moduhttion of laser beams, in Laser H a m t b o o k . edited by F. T. Arecchi and E. (). Schultz-DnBois. pp. 1151 ff. Norlh Holland, Amsterdam (1972). 17. W. W. Rigrod, Appl. t'hvs. LetL 2. 51 (19031. IS. ,I. P. Goldsborough, Beat frequencies between modes of a concave-mirror optical resonator ..Ip[~l. I)l)i 3 267-275 ( 1904}. I% L. W. ('aspcrson and E. m. Shekani. Mode properties oI anllular gain lascls. Al*p[. Opt. 14, 2053 {1~75 !. 2(). M. V. Berry, Singularities in waves and rays, in t'hv~'ic.x ~{/"I)t!/¢'t't.s. edited by R. Balian cral., l.cs Houchc~ Session XXXV, and references thereto. Elsevier, Amstcrdaln {10c.~2). 21. m. V. Berry, J. F. Nvc and F..I. Wright, The elliptic umbilic diffraction catastrophe, Phi/. l'ran~. I¢ S,,, I.omt. 291,453 (1979). 22. N. B. B a r a n m a , B. Ya. Zel'dovich, A. V. Mamacx, N. F. Pilipetskii and V. V. Shkukox. Dislocation,, ot /he wavefront of the specklc-mhon-logeneous field (theory and experiment), 3,(n'. t ' h v s . . I E T I ' l_ett 33. 1~)6 ( 1981 ). 23. H. Haken, Synert~eticx: all IHtrodueti¢m. Springer, Berlin (1t;'77). 24. G. Nicolis and I. Prigogine. ,S'df-opgani=ation in "Votwquilit~rium .%'.~wmv. Wile?,, Ncx~ York { l~,~77}. 25. M. Brambilla, L. A. Lugiato. V. Penna, F. Pratt, ('. Tamm and C. O. Weiss, Transverse laser patterns 11: variational principle for pattern selection, spatial multistability and laser hydrodynamics, I'hv~. Rc~. A43. 5114 512(l { 1991 ). 20. K. Staliunas. Laser Ginzburg Landau equation and laser hvdrodwlamics, I'hv.s. I&c. A48, 1573 1581 (1¢~u3) 27. L. A. Lugiato, C. Oldano and [.. M. Narducci. Cooperative frequency locking and stationar,, ,,patial structures in lasers, ./. Opt. Soc. Am. BS, 879-888 (It~88). 2,';. P. ('oullct, L. (;il and F. Rocca, Optical vortices, Opt. ('onlm. 73, 403 407 (198q). 2% G. L. Oppo, G. P. D'Alessandro and W. J. Firth. Spatiotemporal instabilities of lasers in models reduced xla center manifold techniques. Phys. Rev. A44.4712 472(1(1991). 30. P. Mandel. M. Oeorghiou and T. ~l'netlx. Transverse effects m conherclll[\ dr:\on notfliucar vaxltiu',. Pln'.s. Rev. A47, 4277 (1993). 31. M. Tlidi, M. Georghiou and P. Mandcl, Transverse patterns in nascent optical bistabilitx. I'/n~ R c ~ A48. 46(15 (1903). 32..1. Lega. P. K. Jakobscn. J. V. Moloncy and A. ('. Newcll, Nonlinear trans\crsc modes of large a~,pcct ratio homogeneously broadened lasers--ll: pancrn analysis near and beyond threshold, Ptlv~. Rcl A49. 42(/1 4212 {1994). 33. R. l.efevcr, 1,. A. Lugiato, K. Wang, N. B. Abrahain and P. Mandel, Phase dw~amics of transxc~sc diffraction patterns in the laser, Pin's. Letl, A135. 254-268 (1989). 34. K. Wang, N. B. Abraham and L. A. Lugiato, Leading role of optical phase instabilities m the lo~n3ation ,,1 certain laser transverse patterns, Phyv. Rer. A47, 1203 (1993). 35. G. S. M c D o n a l d and W. J. Firth, Spatial solitary-wave optical m e m o r y , .1. ¢)pt. ,S'o~. Am. B7, 1328 (l'~t~Oi. 36. G. S. M c D o n a l d and W. J. Firth, Switching dynamics of spatial solitary w a s t pixels, ,I. Opt. ,Soc...Ira. Bill. 11181- 11189 (1993). 37. M. Brambilla, L. A. Lugiato, M. V. Pinna, F. Pratt, P. Pagan:, P. Vallotti, M. Y. Li and ('. O. \Vci,,,,. The laser as nonlinear element for an optical associative memory, ()pt. ('omm. 92, 145 1~4 (1902). 38. P. Vanotti, P. Pagan:, L. A. Lugiato and M. V. Pinna, All-optical associative memory based on the tp,e o l the laser a s a nonlinear element, Opt. l.ett. I% 152('~ 1528(19~2).
Introduction and review
1255
39. S. A. Akhmanov, M. A. Vorontsov, V. Yu, Ivanov, A. V. Larichev and N. I. Zheleznykh, Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures, J. Opt. Soc. Am. Bg, 78-90 (1992). 40. C. P. Smith, Y. Dihardja, C. O. Weiss, L. A. Lugiato, F. Prati and P. Vanotti, Low energy switching of laser doughnut modes and pattern recognition, Opt. Comm. 102,505-514 (1993). 41. M. I. Kolobov and I. V. Sokolov, Spatial behaviour of squeezed states of light and quantum noise in optical images, Soy. Phys. JETP 69, 1097 (1989); Squeezed states of light and quantum noise-free optical images, Phys. Lett. A140, 101 (1989); Multimode squeezing, antibunching in space and noise-free optical images, Europhys. Lett. 15,271 (1991). 42. A. La Porta and R. E. Slusher, Squeezing limits at high parametric gains, Phys. Rev. A44, 2013 (1991). 43. L. A. Lugiato and F. Castelli, Quantum noise reduction in a spatial dissipative structure, Phys. Rev. Lett. 68, 3284 (1992). 44. L. A. Lugiato and A. Gatti, Spatial structure of a squeezed vacuum, Phys. Rev. Lett. 70, 3868 (1993). 45. G. Grynberg and L. A. Lugiato, Quantum properties of hexagonal patterns, Opt. Comm. 101, 69 (1993). 46. N. B. Abraham and W. J. Firth, editors, J. Opt. Soc. Am. B7 (6) and (7), Special issues on transverse effects in nonlinear optical systems (1990). 47. N. B. Abraham and W. J. Firth, Overview of transverse effects in nonlinear-optical systems, J. Opt. Soc. Am. B7, 951-962 (1990). 48. F. T. Arecchi, Space-time complexity in nonlinear optics, Physica D51,450-464 (1991). 49. L. A. Lugiato, Spatio-temporal structures--Part I, Phys. Rep. 219,293-310 (1992). 50. C. O. Weiss, Spatio-temporal structures--Part II: vortices and defects in lasers, Phys. Rep. 219, 311-328 (1992). 51. A. C. Newell and J. V. Moloney, Nonlinear Optics. Addison-Wesley, Redwood City, CA (1992). 52. J. V. Moloney and H. M. Gibbs, Role of diffractive coupling and self-focusing or defocusing in the dynamical switching of a bistable optical cavity, Phys. Rev. Lett. 48, 1607-1610 (1982). 53. M. LeBerre, E. Ressayre and A. Tallet, Self-focusing and spatial ringing of intense cw light propagating through a strong absorbing medium, Phys. Rev. A25, 1604 (1982). 54. N. N. Rozanov, V. E. Semenov and G. V. Khodova, Transverse structure of a field in a nonlinear interferometer--I: switching waves and steady-state profiles, Soy. J. Quantum Electron. 12, 193-197, and references quoted therein (1982). 55. D. W. McLaughlin, J. V. Moloney and A. C. Newell, Solitary waves as fixed points of infinite-dimensional maps in an optically bistable ring cavity, Phys. Rev. Lett. 51, 75-78 (1983). 56. L. A. Lugiato and R. Lefever, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett. 58, 2209-2211 (1987). 57. J. Pender and E. Hesselink, Sodium phase-conjugate oscillator in a combusting environment, Opt. Lett. 12, 693-695 (1987). 58. J. H. Moloney, H. Adachihara, D. W. McLaughlin and A. C. Newell, Fixed points and chaotic dynamics of an infinite dimensional map, in Chaos, Noise and Fractals, edited by R. Pike and L. A. Lugiato. Hilger, Bristol (1988). 59. G. Grynberg, E. Le Bihan, P. Verkerk, P. Simoneau, J. R. R. Leite, D. Bloch, S. Le Boiteux and M. Ducloy, Observation of instabilities due to mirrorless four-wave mixing oscillation in sodium, Opt. Comm. 67,363-366 (1988). 60. G. Giusfredi, J. F. Valley, R. Pon, G. Khitrova and H. M. Gibbs, Optical instabilities in sodium vapor, J. Opt. Soc. Am. B5, 1181-1191 (1988). 61. S. Akhmanov, M. A. Vorontsov and V. Y. Ivanov, Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves: onset of optical turbulence, JETP Lett. 47,707-711 (1988). 62. A. Ouazzardini, H. Adachihara, J. V. Moloney, D. W. Mclaughlin and A. C. Newell, Spontaneous spatial symmetry breaking in passive optical feedback systems, J. Physique colloque C2, (Suppl. 6), 455 (1988). 63. G. Grynberg, Mirrorless four-wave mixing oscillation in atomic vapors, Opt. Comm. 66,321-324 (1988). 64. W. J. Firth and C. Par~, Transverse modulational instabilities for counterpropagating beams in Kerr media, Opt. Lett. 13, 1096-1098 (1988). 65. A. L. Gaeta, M. K. Skeldon, R. N. Boyd and P. Narum, Observation of instabilities of laser beams counterpropagating through a Brillouin medium, J. Opt. Soc. Am. B6, 1709 (1989). 66. M. Aguado, R. F. Rodriguez and M. San Miguel, Dynamics of pattern formation in the turing optical instability, Phys. Rev. A39, 5686 (1989). 67. N. N. Rozanov and G. V. Khodova, Diffractive autosolitons in nonlinear interferometers, J. Opt. Soc. Am. B7, 1057-1065 (1990). 68. W. J. Firth, Spatial instabilities in a Kerr medium with a single feed-back mirror, J. Mod. Opt. 37, 151 (1990). 69. J. Pender and L. Hesselink, Degenerate conical emissions in atomic sodium vapor, J. Opt. Soc. Am. B7, 1361 (1990). 70. M. A. Vorontsov, N. I. Zheleznikh and V. Yu Ivanov, Transverse interactions in 2D feedback nonlinear systems, Opt. Quant. Electron. 22, 501-515 (1990). 71. W. J. Firth, Spontaneous spatial patterns in nonlinear optics, in ECOOSA '90-Quantum Optics, edited by M. Bortolotti and E. R. Pike, pp. 173 ft. Institute of Physics, Bristol (1991). 72. M. Kreuzer, W. Balzer and T. Tschudi, Mol. Cryst. Liq. Cryst. 198,231 (1991). 73. M. Kreuzer, H. Gottschling and T. Tschudi, Mol. Cryst. Liq. Cryst. 207,219 (1991).
125I~
l.. :\. I t , , l \ l < ,
74. A . A . s\[{lll~l~," t.'\. B. z\. 8{1111~,t)11and P,. "~'akit¢, l.a~cr I'hv~. 1. 3c~cJ t lqCJl I. 75. A . Potrossiail. M. Pinard. A . M a i t r e . . 1 . "f. ('ourloi', and (;. (h-vnb¢rg. Irall~,\c_'r,,c-pilttt.'i'll lcUll/all~qt hq ¢Oti llt¢l-l]ropagatillg laser b¢alll~; in rtibiditllll rapt)ill, EU#ol)l(v~. /.,'st. 18, 138t) ( ICJ92i. 7(~..I. "st. Courtois mid (-i. ( ] r y n b ¢ r g , Spatial patL,2rll f o r m a t i o l ] 1or ct)tilllC'lprol-~at!Cltilig beN|ill,, ill ci k ( r l mCdlliiii a simpl¢ modol. Opl. ( o m m . 87. ISf~ (lCJ92). 77. W. J. Firth. A . J. Scroggi¢, (i. S. M c D o n a l d {illd I.. ,~t. Lugiato, ]lcxa~onal paltClip, ill ()ptical hiM|lib|hi\ Phys. Rcl'. A46, R3(~()9 (1992). 78. I~. ('h~.1117, ~V. J FiFlh, R. lndik. ,I. V. Molonmv and [{. M. \ ~ l i g h l , ['hiec-dimeilsional <,lllltli;lli()llX ,)1 dcgt_'n¢ral0 t_'Otilllc'rl)rol~agalillg bt.'ai11 instabilities in tl ncmlim'ar in(ditilil. ()[)t. ('<)him. 88. lfi7 (lcJc)2) 7cj G. P. D'Alc,~sandro anti "~'..I. Firth. Hexagonal stxilial pattern foi ;i K e r r kli¢¢ \~itll a lt_'cdha(k Iiiii1 H IJhv~ 17('1'. A46, 537 (lt)CJ2). ~1i ~. R. Lit| and (i. lndchmlou\~, Periodic ;llld cha<>tic ~l)~lliOl¢lllpt)r;l[ ,,ICll(n i[1 ~t ]'~hci,q:-¢oili/lgalc lltf%till;{{l,i usiIIg, pholorefracti',c B a T i O ; [;htl~,t2IeotljHg{lIC i l l i r r o r . . / ()/W..S'oc..'t/H. Bg. 15i17 (lt. ( ' o m m . 91. 321 33(l(IC)92}. <<,2..1. Nalik. 1.. M. Hoflci-. (}. 1_ Lippi. ('h, 'v'oigmi'd ~lnd ~\'. I.anoc. Yltillk~.¢i$¢ ()lViual bistabilitv cmd t()illl;ll!<,i! cif ti-any, vt21"<~¢ MrtietUl-O.'4 hi a ~odium-filicd P a b r y - P e r o l rt_'<,Oilalt)r. ]Jhl,'~,. R('v. ,\-15. R4237 (1c)c#2l St M. t [ a ¢ i l ( r m a n , Period-doubling bifuraelions and nlodulutional in~tabilit\ in the nonlinca) ring c';i\ll,, :ill allCllvtiea] study. OpL Lct~. 17, 7c}2 (19c,i21. ~4. M Branlbil]~i, (i, Bloggi and F. Prclti. S p a t i o i ( n l p o l a l pallc'ln 1orill |it t)~i~si~c ~2). ~(). ~'1. ~tiLler {llld F. K{li~,t+'l. 8p~lLia] ~;ylnll]7[ly brcakillg all(I c.'ot_'M~lt.'llCt_' ot ;illl~lC.'[t)l <-, ill {I IlC)lliillc'{ll I111~ c;)\H\ .lpph'. Phys. 11~5, 13,<'4 14-3 (19'-,12). ,',;7 E. V. |)cgtyarc'x and M. A . \/orontso~<. Spatial dvilallliCy; ot two t.'Olllpoilcill optical ',\,M¢in %~it]1 lai~c. ,<';~i~" int¢iaction. Mo/. (. )'vw l.kl. ('rvvr. <;ci 7"cchno/. 3, 295-31(i 119c~23. S~. S. It. I.iu ;lilt] (l. fndt_'b¢louw. ~l'~aliotC, ml'loral piillOrll anti \t)lticcx llit){iOll ~, ill l~lla'~c-ct)tliugcil¢ rc~,t)lltlltli~ Opt. ( ' o n l m . f i l l . 442 (IC~C)3/. ~t) ~|. }|;IcllCl'lllall. fkeda instability and {l{lllN\Cl~.k ' clI¢ct~, ill vl()illillc~ir rillg l¢~tiilalois, ()lr)[. ( <)~#11tl 11111. ;Xc! ( i tjcJ3 ). '-lit. P. Papofl. (}. 1)" Alc'>,~,alldl'(). (l. f.. ()pp,, aild ~ , \ . . 1 f:irih. Local ~illcl gh)bal elloots ()1 bottndaric,, ,~l optical-patteri~ ft)rmation in K c r l media, PJlv~. i~t,l'. A48, (~34 (Ic7931. c)l M. T a m b t i r r h l i , M. B o m l v i l a , S. V~'abllil/ ~iilcl ~. ~Cilltalllato, Hcxagt)nal]} pcillc'lil(d be'am fil~/lllCnt')83}. cJ4. W. J. Hahis, S. N. l.in and N. B. A b r a h a m , Route to n/ode-locking in a three-mr)de 3.39 um las¢l h~clticilng chaos iI1 the sccondar}, beal fr¢ql.lei1cy, P/ivy,. t~t,l'. A28, 2tJl5 2920 (1c)833. t)5. P. H o l l i n g c r and ('. Jtlilg, Single Ionl~itudinal-nlodc ]Hsur {1<~ '<1 discrclc d \ m i m i c a ] s}stc111..1. ()[H S J( tiM, B2, 218-225 (feSS). c)¢~. M. f.. Shih. P. VV. M i l o n n i :lnd .I. F,. : \ c k ( r h a h , M o d c l m g Icls(r instabililics cind chaos, .1. ()pt. 5,o( li~z 112. 13(i ( 1985i. c-i7. D, .l. Biswas alld R. (i, Harrison, E x p e r i m e n t a l ( x i d c n c c o I lhrcc-nlodc quasipcriodi¢ity ttlld chtlo., 111 i single [Ollgittldiiltll multi-trallSvc'rse-nlodc" cw ( ' O - las,._'r, ])/tvv. I¢cl. :4132. 3835 3837 (1985). c38. L. A. Lugiato, F. Prati. [_. M. Narducci. P. Ru, J. R. Trcdiccc aiid D. K. I-~aildv, P,ole o l irans\crsc c.ltc'ct~ in hiscr instabilities, t'hvs. Rot'. A37. 384% 38()(~ (It>lSV;). cjc-i. L. A. L u g i a t o . (i. L. O p p o . M. A. Pernigo. ,1. R. Trod|coo. L M. Nardu¢¢i and D. K. Bciild), .%pOllianc<>tls ~,palial pcitlcrn formatit)n in lasers and coopcralivc frcclUCi~cy locking. Opt. ( ' o m m . 68, f~3 f~£ (10NS) 1(10. (.'. T[IITlIll, Prc'qUcncy locking in i w o tral/Svc'rs,2 optical i11c)(.t~_',,of a laser. Phys. R,'v A38. 5tJ6() 5t)o3 i [cJ,'-;xJ [ ( l [ L. ,.\. Lugiato. F. Prati. L. M. Nurducci alld (}. I . O p p o . Spt)I/lall(t)tlS b r e a k i n g of the cylindrical S~lllll/c, ll'. in lascis, Opt. ('omnt. 09. 387 392 (19893. 1(32. J. R. Trcdiccc, E. J. Q u c l . A . M. G h a z z a ~ i . (_'. ( h ' c ( n . M. ,.\. Pcl'nigt). 1.. ]kl. Naiducci and I ,-\. l.u~i~ih, Spalial and t e m p o r a l i n s t a b i l i l i c s in a ('02 laser, Phys. R(,v. Len. 62. 1274 1277 (198c,i). 11 ~,. V. K[ische. C. O. Weiss and B. Wellcgehauscii, 8pciiiolemporal chm)s trom ;i ¢olltinuous "N;i l~L,c'I Phvv. Rev. A39, c)19 922 (198'4). I!)4. 1_,. A . l.ugiato. (i. L. O p p o , J. R. Trcdiccc. 1.. M. Nalducci CiIld M. A. Pcrnigo. lnqllbiliti¢~ and sp;m~i c o m p l e x i t y in a laser. J. O[~t. 5,o('. ,,tm. 7. 1(119-1033 (It,it~l)). 1115. P. T. Are¢¢hi, R. MeLlcci alld [.. Pczzali. (_'haos in ;i ( O - wa\'cguid¢ Idsc'r chic it~ lltlll,,\t_'l~C lilt,tic' c o m p e t i t i o n . Phys. Rt>l'. A42, 5 7 9 1 - 5 7 9 3 (it)c)()). L(I(~. ('. Green. G. B. Mindlin. E. J. 1)'Angelo. H. (i. Solar| anti .1. R. Trcdiccc, Sl)ontan¢otis Syllll]]CIi% I'qt_'HkillE in laser: the cxperinleiHal sick', Phys. Rev. Let|. 65, 3124-3127 (l'~CJ0). ll37. L. i \ . M e l n i k o v . . S . T a r l a k o \ ' a allCi ('. N. T:.iru.tkov. N o n l i n e a r dynamics o f bee|ill [~aranl(t(ry, aild lillc'il,qu, ~II ~ill unidirectional rmg lay,er with a flOlIiOgl211cous]y broadened line..J. Opt..';or. Am. B7. 128(~ 1292 (Itjt-i(li 1138. ('. T a m m alld (" (7). V~/ciy,s. ,~,flonUtn¢ous brc:.lking of cylindrical >,vnlillcLr~ in all opiically pumped ta-
Introduction and review
1257
Opt. Comm. 78, 253-258 (1990). 109. H. Lin and N. B. Abraham, Mode formation and beating in the transverse pattern dynamics in a laser, Opt. Comm. 79,476-488 (1990). l l0. D. Hennequin, D. Dangoisse and P. Glorieux, Instabilities in a bimode laser with a saturable absorber, Ol;t. Comm. 79, 200-206 (1990). 111. D. Hennequin, D. Dangoisse and P. Glorieux, Farey hierarchy in a bimode CO: laser with a saturable absorber, Phys. Rev. A42, 6966 (199(/). 112. M. Brambilla, F. Battipede, L. A. Lugiato, V. Penna, F. Prati, C. Tamm and C. O. Weiss, Transverse laser patterns--I. Phase singularity crystals, Phys. Rev. A43, 5090 (199l). 113. G. L. Oppo, L. Gil, G. D'Alessandro and W. J. Firth, Optical vortices in lasers, ECOOSA'90--Quantum Optics, edited by M. Bortolotti and E. R. Pike, pp. 191 ft. Institute of Physics, Bristol (199i). 114. M. Brambilla, M. Cattaneo, L. A. Lugiato and F. Prati, Transverse laser patterns and phase singularity crystals, ECOOSA'90--Quantum Optics, edited by M. Bortolotti and E. R. Pike, pp. 133-144. Institute of Physics, Bristol (1991). li5. P. Colet, M. San Miguel, M. Brambilla and L. A. Lugiato, Fluctuations in transverse laser patterns, Phys. Rev. A43, 3862-3876 (1991). 116. L. Gil. K. Emilsson, and G. L. Oppo, Dynamics of spiral waves in a spatially inhomogeneous Hopf bifurcation, Phys. Rev. A45, R567-R570 (1992). 117. P. K. Jakobsen, J. V. Moloney, A. C. Newell and R. Indik, Space-time dynamics of wide-gain-section lasers, Phys. Rev. A45, 8129-8137 (1992). 118. E. J. D'Angelo, E. Izaguirre, G. B. Mindlin, G. Huyet, L. Gil and J. R. Tredicce, Spatiotemporal dynamics of lasers in the presence of an imperfect 0(2) symmetry, Phys. Rev. Lett. 68, 3702-3705 (1992). 119. E. J. D'Angelo, C, Green, J. R. Tredicce, N. B. Abraham, S. Balle, Z. Chert and G.-L. Oppo, Symmetry breaking, dynamical pulsations, and turbulence in the transverse intensity patterns of a laser: the role played by defects, Physica D61, 6-24 (1992). 120. D. Hennequin, C. Lepers, E. Louvergneaux, D. Dangoisse and P. Glorieux, Spatio-temporal dynamics of a weakly multimode CO2 laser, Opt. Comm. 93,318 322 (1992). 12l. D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux and P. Glorieux, Two-dimensional optical lattices in a CO: laser, Phys. Rev. A46, 5955-5958 (1992). 122. R. Lopez Ruiz, G. B. Mindlin, C. Perez-Garcia and J. R. Tredicce, Mode-mode interaction for a CO2 laser with imperfect 0(2) symmetry, Phys. Rev. A47, 500-509 (1993). 123. C. O. Weiss, H. R. Telle, K. Staliunas and M. Brambilla, Restless optical vortex, Phys. Rev. A47, R1616-RI619 (1993). 124. H. Adachihara, O. Hess, E. Abraham, P. Ru, J. V. Moloney, Spatio-temporal chaos in broad-area semiconductor lasers, J. Opt. Soc. Am. BI0, 658-665 (1993). 125. P. K. Jakobsen, J. Lega, Q. Feng, M. Staley, J. V. Moloney and E. M. Wright, Nonlinear transverse modes of large aspect ratio homogeneously broadened lasers--I: analysis and numerics, Phys. Rev. A (in press). 126. L. A. Lugiato, Wang K. and Sun Yinguan, Phase-dependent laser equations, Opt. Comm. (in press). 127. M. Brambilla, M. Cattaneo, L. A. Lugiato, R. Pirovano, F. Prati, A. J. Kent, G.-L. Oppo, A. B. Coates, C. O. Weiss, C. Green, E. J. D'Angelo and J. R. Tredicce, Dynamical transverse laser patterns--I: theory, Phys. Rev. A49, 1427 1451 (1994). 128. A. B. Coates, C. O. Weiss, C. Green, E. J. D'Angelo J. R. Tredicce, M. Brambilla, M. Cattaneo, L. A. Lugiato, R. Pirovano, F. Prati, A. J. Kent and G.-L. Oppo, Dynamical transverse laser patterns II: experiments, Phys. Rev. A49, 1452 1466 (1994). 129. F. Prati, M. Brambilla and L. A. Lugiato, Pattern formation in lasers, Rivista Nuovo Cimento, 17, No. 3 (1994). 130. F. T. Arecchi, G. Giacomelli, P. L. Ramazza and S. Residori, Experimental evidence of chaotic itinerancy and spatiotemporal chaos in optics, Phys. Rev. Lett. 65, 2531-2534 (1990). 131. F. T. Arecchi, Space time chaos in optical media: dry hydrodynamics, in ECOOSA'90--Quanmm Optics, edited by M. Bortolotti and E. R. Pike, pp. 257 ft. Institute of Physics, Bristol (1991). 132. F. T. Arecchi, S. Boccaletti, G. B. Mindlin and C. Perez-Garcia, Periodic and chaotic alternation in systems with imperfect 0(2) symmetry, Phys. Rev. Lett. 69, 3723-3726 (1992). 133. K. Staliunas, Optical vortices during three-wave nonlinear coupling, Opt. Comm. 91, 82-86 (1992). I34. F. T. Arecchi, S. Boccaletti, P. L. Ramazza and S. Residori, Transition from boundary to bulk controlled regimes in optical pattern formation, Phys. Rev. Lett. 70, 2277-2280 (1993). 135. F. T. Arecchi, S. Boccaletti, G. Giacomelli, P. L. Ramazza and S. Residori, Vortices and defect statistics in two-dimensional optical chaos, Phys. Rev. Lett. 67, 3749 (1991). 136. D. Hennequin, D. Dangoisse and P. Glorieux, Basic transverse dynamics of a photorefractive oscillator, Opt. Lett. (in press). 137. G.-L. Oppo, M. Brambilla and L. A. Lugiato, Formation and evolution of roll patterns in optical parametric oscillators, Phys. Rev. A49, 2028-2032 (1994). 138. G.-L. Oppo, M. A. Pernigo, L. M. Narducci and L. A. Lugiato Characterization of spatiotemporal structures in lasers: a progress report, in Measures" of ComplexiO' and Chaos, edited by N. B. Abraham, A. M. Albano, A. Passamante and P. Rapp, pp, 39 ft. Plenum, New York (1989). 139. L. Gil, Vector order parameter for an unpolarized laser and its vectorial topological defects, Phys. Rev. Lett. 70, 162 (1993). 14(t. J. W. Grantham, H. M. Gibbs, G. Khitrova, J. F. Valley and X. Jiajin, Kaleidoscopic spatial instability:
1258
L . A . [.t,~,i.,,~>
bifurcations of optical transverse solitary waves, Phys. Rev. Lctt, 66, 1422 ( 1991 ~. 141. R. K. Bullough, Instabilities m non-linear dynamics: paradigms for self-organization, in Sel/~organi;ml~m a Paradigm liar Sciences, edited by D. Maass, R. K. Mishra and W. Zweierle. Springer, Berlin ( 19931. 142. G. A. Swartzlander, D, R. A n d e r s e n , J. J. Regan. H. Yin and A. E. Kaplan, Spatial dark-soliton stripc~ and grids in self-defocusing materials, P h w . Rev. Lett. 66, 1583- 1586 (19~11. 143. S. S, W a n g and H. G. Winful. Dynamics of phase-locked semiconductor laser arrays, 41~pl Phys. l.cu 52. 1774 1770 (1988). 144. K. Otsuka. Self-induced path formation anlong local attractors and spatiotcmpora[ chaos in :1 complcx C,inzburg Landau equation. Pin's. Rev. A44. 1393 13t~6(l~t91}.