Propriétés optiques des métaux alcalins

Propriétés optiques des métaux alcalins

Thin Solid Films, 50 (1978) 311-320 © Elsevier Sequoia S.A., Lausanne--Printed in the Netherlands 31 1 PROPRII~TI~S OPTIQUES DES MI~TAUX ALCALINS P...

590KB Sizes 1 Downloads 90 Views

Thin Solid Films, 50 (1978) 311-320 © Elsevier Sequoia S.A., Lausanne--Printed in the Netherlands

31 1

PROPRII~TI~S OPTIQUES DES MI~TAUX ALCALINS P. ROUARD Centre d'Etude des Couches Minces, Laboratoire associ~ au C.N.R.S., Universit~ d'Aix-Marseille 111, 13397 Marseille C~dex 4 (France)

Les rbsultats exp~rimentaux les plus r6cents semblent confirmer que les m6taux alcalins ont des spectres optiques simples qui s'accordent, dans l'ensemble, assez bien avec les th6ories 616mentaires de la physique des solides, dans le cadre de l'approximation ~t un 61ectron. Une am61ioration encore possible de ces r~sultats expbrimentaux pourrait att6nuer les d6saccords qui subsistent. Summary

Most recent experimental data show that the optical spectra of alkaline metals are not complex and generally agree with elementary solid state physics theories based on the one-electron approximation. Improvements of these experimental data are still possible and these could reduce some disagreements with theory.

1. INTRODUCTION La d&ermination des propri6t~s optiques des m&aux alcalins et en particulier du lithium a fait l'objet, dans ces derni6res ann6es, de nombreux travaux. Nous nous int6resserons, dans ce qui va suivre, ~ celles de ces propri6t6s qui sont caract6ris6es par la permittivit6 complexe ~ = e~+Je2 et son interpr6tation en termes d'excitations ~16mentaires. Nous ~tudierons essentiellement la partie imaginaire ~2 = 2nk de cette permittivit~ (ot~ n e s t l'indice de r6fraction et k l'indice d'extinction) qui caract6rise l'absorption optique due ~t des ph6nom6nes mettant en jeu des transitions optiques, /t travers la grandeur qui lui est directement li6e cr = (og/4n)e 2, que l'on d6signe sous le nom de conductivit6 optique. Nous ne traiterons pas des ph6nom6nes simples de diffusion et de diffraction. Les r6sultats obtenus avant 1974 ont d~j/t 6t~ analys~s dans des articles d'ensemble comme ceux de Nilson 1, Rouard et Meessen 2 ou Rouard 3. Toutefois, des progr6s importants ont 6t6 r~alis~s tout r6cemment. Nous nous y int6resserons particuli~rement. 2. PROPRIf/TES OPTIQUES DES Mf/TAUX ALCALINS 2.1. R~sultats relatifs au sodium, au potassium, au rubidium et au c~sium

On peut se proposer de d&erminer ces propri&6s lorsque les m&aux sont ~i l'6tat solide ou lorsqu'ils sont ~tl'6tat liquide.

312

P. ROUARD

En ce qui concerne l'etat solide (mis ~i part Mayer et al., qui ont opere darts la plupart de leurs experiences avec des metaux /t l'etat massif mais prepares par evaporation thermique) ces determinations ont ere faites au moyen d'une methode ellipsometrique, en utilisant des couches plus ou moins epaisses deposees sur des supports polls optiquement et etudiees in situ sous vide tres pousse. On avait en effet espere, etant donne la faible profondeur de penetration des ondes electromagnetiques dans le domaine des energies photoniques compris entre 0,5 et 11 eV, que le remplacement du metal massif par une couche suffisamment epaisse permettrait d'obtenir de meilleurs resultats en ameliorant la qualite de la couche superficielle utilisee en fair pour les mesures, couche dont la purete, la structure, la rugosite de surface, dans le cas du metal massif, 6taient le plus souvent inconnues ou real connues. Malheureusement, comme d'ailleurs Male et Rouard 4 l'avaient laisse prevoir des 1953, l'espoir de retrouver ainsi les proprietes optiques du metal massif pur, ayant la structure cristallographique normale, ne s'est pas jusqu'ici concretis~ entierement. La Fig. 1, sur laquelle sont representees pour le sodium solide les variations de la conductivit6 optique en fonction de l'bnergie photonique incidente, montre en effet que dans la region s'etendant de l'infrarouge au proche ultraviolet, off sont localisees pour'les alcalins les transitions intrabande et interbandes ainsi que les frequences d'oscillation de plasma, les resultats obtenus par les differents auteurs s l Z presentent entre eux, et en general avec les predictions theoriques basees sur le modele de l'electron quasi-libre, des differences considerables. C o m m e on peut le remarquer, les resultats de Smith 9, obtenus en utilisant pour les mesures la surface support metal de couches epaisses, sont en accord qualitatif avec les courbes theoriques et peuvent 6tre interpretes comme resultant uniquement des transitions intrabande et interbandes, le seuil de ces dernieres (dont c'dtait d'ailleurs la premiere determination) se situant aux environs de 2 e V e t leur m a x i m u m d'effet vers 2,8 eV, en accord avec les predictions de la theorie de Wilson 13 et Butcher 1'* et les calculs de structure de bande bases sur le modele fi un electron. Par contre, les courbes relatives fi certains resultats de Hodgson 7 et/t ceux de Mayer et Hietel s rev6lent l'existence d'une forte bande d'absorption, en dessous du seuil des transitions interbandes (fi 1,4 eV pour Hodgson et ~i 1,7 eV pour Mayer et Hietel), dans une region off l'absorption de Drude est tres faible. Ce resultai etonnant, obtenu en ce qui concerne Mayer et Hietel en utilisant la surface metal-vide d'un echantillon de metal massif, ne peut pas 6tre expliqu6 par les theories simples. II a fait l'objet, sit6t annonce, d'un certain nombre de travaux theoriques sur les processus 61ementaires d'excitations electroniques dans les metaux alcalins massifs 15-2o alors que la suite devait montrer qu'en fait il s'agit d'un 6piphenomene qui semble lie essentiellement/t la rugosite de la surface utilisee pour les mesures. En effet, une premiere serie de travaux experimentaux avait montre, d'une part 9, que dans certaines conditions experimentales on ne retrouve pas cette bande, et d'autre part 12, qu'elle apparait au contraire lorsque le metal alcalin est/t l'etat de touche granulaire. Ceci avait amene Marton sv et surtout Meessen 2z fi developper une theorie selon laquelle cette bande extraordinaire, apparaissant en incidence

PROPRIETES OPTIQUES DES METAUX ALCALINS

313

normale, serait due ~t des oscillations collectives s'effectuant parall+lement h la surface du support dans les grains constituant les couches granulaires ou fi un couplage, grglce aux rugosit~s de surface, de l'onde 61ectromagn&ique incidente aux oscillations de plasma de surface dans le cas des couches 6paisses. Contest~e dans une s6rie de publications effectu6es en 1972 et 1973 par Mayer et al. 23-25, Steffen et Mayer 26 et Hietel et Mayer 27, confirm6e, par contre, par Payan et Roux 28, cette th60rie semblait donner une bonne interpr6tation des faits observ+s. Restait, cependant, l'argument de Mayer et al. s'4° selon lequel, la bande anormale persistant lorsque le m&al est fi l'6tat liquide, son origine ne pouvait ~tre trouv6e dans une rugosit6 de la surface, ce qui amenait ces auteurs fi penser, avec Hodgson, que cette origine devait &re attribu6e h des transitions indirectes. Dans le m6me temps, les mesures des propri6t6s optiques ont 6t6 &endues vers les faibles 6nergies photoniques par Althoffet Hertz 29 et jusque dans l'uitraviolet fi vide par Sutherland et al. ao, 31 De m6me, Whang et al.32 avaient d&ermin6, pour le sodium, le potassium, le rubidium et le c+sium, la conductivit6 optique au dela de 10,5 eV, tandis que Yamaguchi et Hanyu 34 le faisaient pour le potassium au-delfi de 6 eV. Les r~sultats obtenus par Whang e t al. 33 sont repr~sent~s par la Fig. 2. On y a ajout6 ceux de Sutherland et al. 31 pour le sodium et de Smith 9 pour les faibles 6nergies photoniques. Pour tousles m&aux +tudi6s, sauf peut-&re pour le sodium, il existe un 6cart important, pour les hautes 6nergies, entre les r6sultats exp6rimentaux et la th+orie de l'61ectron quasi-libre. Certains auteurs, comme Lundqvist et Lyden 35 ainsi que Hermanson 36 et d'autres, ont essay+ d'expliquer ces r6sultats en tenant compte de l'interaction de Coulomb entre 61ectrons en utilisant le formalisme du probl6me fi N corps. D'autres encore ont pens6 que les structures observ6es sont li6es fi des transitions fi un 61ectron entre les 6tats d et f, tandis que certains calculs de densit6 d'6tats joints du potassium semblaient montrer que le maximum observ6 pour le potassium vers 8 eV serait dfi ~t des transitions dans une b a n d e d complexe 3v. D'un autre c6t+, les r6sultats exp6rimentaux obtenus par les diff6rents auteurs, en ce qui concerne la partie r6elle de la permittivit~ e~, sont en bon accord, ce qui laisse supposer que la qualit6 de la surface utilis6e pour les mesures n'a que peu d'effet sur eux. Ceci semble moins vrai en ce qui concerne le lithium. Les choses en 6taient lfi quand, dans deux articles publi6s en 1976, Inagaki et al.3a, 39 ont apport~ des ~l~ments nouveaux entre 0,6 et 3,8 eV. Travaillant tout d'abord sur la surface quartz-m6tal de couches "infiniment 6paisses" de sodium solide, Inagaki et al. 38 confirm6rent (Fig. 3) avec une grande pr6cision les r6sultats de Smith 9. De plus, utilisant pour leurs mesures la surface m~tal-vide du sodium h l'&at liquide 39, ils ne retrouv~rent pas la bande anormale de Mayer. Or, l'un des principaux arguments avanc6s par Mayer et El Naby 4° puis par Mayer et Hietel a pour justifier l'existence de la bande anormale en tant que propri~tb intrins+que du m&al massif, monocristallin pur, 6tait le fait qu'on la retrouvait lorsque le sodium 6tait fi l'6tat liquide, ce qui excluait selon eux qu'elle soit due h u n effet de rugosit+ de la surface. Enfin, la Fig. 4 rapporte les r6sultats obtenus pour la conductivit6 optique tr du sodium liquide par Inagaki et al., qui raclaient soigneusement la surface du m6tal

314

P. ROUARD

CT (1014~ec-I) C ( s e c - )1 O-.1014 = £2wx-

I i p

2,

':X

2

ii

IJ

,

1¢6 i

,t

,,t,1

-7 . . . .

, ,

,

/

'I '~"

2

-

\

'~..-,z"~b

"

1,2

(nnn) 0,8

R PAYAN

o,4

',3;%'-"?° ./ /' ../K

'\

2

4

// tS~u (eVi

0

1

2

3

z, tS~ e,/

0

6

8

10

Fig. 1. (a) Conductivite optique a du sodium solide, en couches epaisses ou fi l'etat massif, en fonction de l'6nergie photonique incidente: - , courbes th6oriques pour a D et am; r6sultats exp6rimentaux de Duncan et Duncan (. . . . . ); Ives et Briggs ( . . . . . . ); Hodgson ( . . . . ); Mayer et Hietel ( ); Smith (--. -); Palmer et Schnatterly ( × - - × ) ; Monin ( • ). (b) Absorption optique du sodium en couches granulaires: - - , Payan. L'+paisseur massique dcroit des plus basses aux plus hautes courbes. Fig. 2. Conductivit+ optique du sodium solide d'apres Sutherland et al. 3~ (deux traits pleins obtenus avec des couches diff6rentes) et du potassium, du rubidium et du c6sium d'apr~s Whang et al. 33 (traits pleins). Les courbes en traits discontinus, aux basses +nergies, sont de Smith 9. (D'apr+s Whang et al. 33)

liquide a v a n t c h a q u e m e s u r e p o u r 61iminer les impuret6s et, en particulier, la c o u c h e d ' o x y d e form6e. La figure m o n t r e q u e les valeurs exp6rimentales s o n t tr6s v o i s i n e s de la c o u r b e th6orique de D r u d e , calcul6e au m o y e n de la f o r m u l e ne2v O'D-

1

m* l + ~ Z z 2

off n est la densit6 des transporteurs libres, z le t e m p s de relaxation et m* = 1,17m la m a s s e o p t i q u e de l'61ectron. D a n s la r6gion situ~e a u - d e s s o u s de 2,2 e V l'accord q u a n t i t a t i f e s t m 6 m e tr6s b o n et l'on ne trouve a u c u n e trace du m a x i m u m a n o r m a l que M a y e r situait vers 1,7 eV. (II faut p o u r t a n t signaler q u e Inagaki e t al. ont op6r6 fi 120 °C, tandis que M a y e r e t al. avaient travaill6 fi 100 °C.) I1 semble d o n c que, a u - d e s s o u s de 2,2 eV, les propri6t6s o p t i q u e s du s o d i u m l i q u i d e p e u v e n t &re expliqu6es par le mod61e simple de D r u d e de l ' a b s o r p t i o n par l'61ectron quasi-libre. P o u r ce m ~ m e s o d i u m l i q u i d e , a u - d e s s u s de 2,2 e V (Fig. 4) il apparait un ecart entre valeurs th6oriques et valeurs e x p 6 r i m e n t a l e s sup6rieur aux erreurs de m e s u r e possibles. Ceci pourrait 6tre dfi fi u n e r 6 s o n a n c e de l ' a b s o r p t i o n i n t e r b a n d e d o n t le seuil, d'apr6s S m i t h 9, se situerait a u x e n v i r o n s de 2 eV. Pourtant, ce mfime S m i t h 2° a

315

PROPRIETES OPTIQUES DES MI~TAUX ALCALINS

(2" [lO~/sec]

0" [1014/sec) te

i

{i!•

Na solide

3

b

2

rl': 1

.

2

le

.....

, 0

Na liquide

i

3

.

.

.

.

.

-"*-I4j.t~ III I • .I

L

4~(~ [eV)

0

I

I

....

"1. . . . . . .

T---~

Fig. 3. Conductivit6 optique du sodium solide: @, Inagaki et al.aa; - - , Smithg; - - - , courbes th6oriques pour aD eta]. Fig. 4. Conductivit6 optique a du sodium liquide en fonction de l'~nergie photonique incidente: Q, Inagakietal., 120°C; , Mayer et Hietel, 100°C; - - - , Drude, 120 °C. (D'apr6slnagakietal. ag)

montr6 que cette absorption ne devrait plus se manifester dans l'6tat liquide. Enfin, Ching et Callaway 4. ont calcul6, ~ partir de la structure de bande du sodium, la conductivit6 optique de ce m&al h l'6tat solide en utilisant une variante de la m&hode de combinaison lin6aire des orbitales atomiques (LCAO). La Fig. 5 montre, dans le domaine compris entre 0,7 et 10 eV, la comparaison entre les r6sultats qu'ils ont obtenus et les r6sultats exp6rimentaux. Cette comparaison est un test de la qualit~ des fonctions d'onde et des 6nergies calcul~es, dans la mesure off les valeurs exp6rimentales, obtenues avec des couches polycristallines plus ou moins 6paisses et parfaites, sont repr6sentatives du m&al massif pur monocristallin. En d6finitive pour le sodium et en g6n6ral pour le potassium, le rubidium et le c6sium, il y a un bon accord qualitatif et souvent m6me quantitatif entre les r6sultats obtenus par les cliff,rents auteurs ayant op+r6 ~t la surface de s6paration supportm&al et ~t la temperature ordinaire. Ces quatre m&aux alcalins ont un spectre optique simple qui s'accorde, dans l'ensemble, avec les pr6dictions des theories 616mentaires de la physique du solide. Comme nous l'avons montr6 ci-dessus, cet accord est m6me tr6s bon pour le sodium dans certains cas particuliers et il n'est pas interdit d'esp6rer qu'il sera encore meilleur lorsque les techniques exp6rimentales se seront elles-mSmes encore am61ior6es. 2.2. REsultats relatifs au lithium Contrairement aux autres m&aux alcalins, le lithium ne s'6vapore pas sous ultravide fi la temp6rature ordinaire, ce qui facilite son 6tude exp&imentale. Par contre, sa forte r6activit6, en particulier vis-~-vis du verre et du quartz, et le fait qu'il peut exister sous deux formes cristallographiques diff6rentes (cubique fi faces centr6es et hexagonal compact, la temp+rature de passage d'un syst+me cristallin l'autre se situant aux environs de 70 K) complique au contraire cette 6rude. Ceci explique que, mis a part un travail de pionnier de Hodgson 42 effectu6 d'ailleurs dans un domaine spectral tr+s limit6, les premiers r6sultats allant de l'infrarouge l'ultraviolet (0,5-4 eV), obtenus par Mathewson et Myers 43 avec des couches

316

P. ROUARD

epaisses et par Rasigni et Rasigni 44 avec des couches minces, datent seulement dc 1972. Depuis, des progr6s importants ont 6t6 accomplis gr/tce surtout aux travaux de B6senberg 45"'~6, Callcott et Arakawa 47, lnagaki et al. 38, Rasigni et a/. 48-55 et Myers et Sixtensson 56. La Fig. 6 rassemble les r6sultats les plus recents en ce qui concerne la conductivit6 optique. Seuls Inagaki et al. 38 ont op6rb fi la surface support-m&al (le support 6tant du quartz qui, malheureusement, est attaque par le lithium, ce qui peut appeler des r6serves) ; les autres auteurs ont tous op6r6 fi la surface vide m&al. Bien qu'ayant des allures gdndrales analogues, les diff6rentes courbes diff6rent sensiblement en valeurs absolues. Dans l'ensemble, ces r6sultats exp6rimentaux, fruits de techniques diff6rentes de prdparation et d'&ude des couches, sont en assez bon accord qualitatif avec ceux fournis par les thdories 616mentaires de la physique du solide. Par contre, mis fi part peut ~tre les rdsultats de Myers et Sixtensson 5~' obtenus avec des couches 6paisses d6pos6es sur support de saphir fi 15 K puis recuites fi 293 K, de s6rieux d6saccords subsistent au point de vue quantitatif entre les pr6visions th6oriques et les r6sultats exp6rimentaux obtenus par les diff6rents auteurs. Dans le cas du lithium, ce sont certains r6sultats 56., acquis en utilisant la surface c6t6 vide, qui se rapprochent le plus, au-dessus de 1 eV, des previsions th6oriques les plus r6centes, si l'on suppose que la faible valeur trouvee exp6rimentalement pour le seuil des transitions interbandes est due fi un 61argissement du v6ritable seuil provoqu6 par des transitions indirectes. Pourtant, Rasigni e t al. 53 on montr6 que, m~me avec des couches pr6par6es fi tr6s basse temp6rature, une certaine rugosit6 subsiste sur la surface vide-mdtal. II est vrai, toutefois, que leurs couches n'6taient pas recuites. Myers et Sixtensson 56 ont d'ailleurs remarque que leurs r6sultats se divisent en deux groupes associes respectivement aux deux syst6mes cristallins-~zubique ~i faces centr6es et hexagonal compact. Ceux dont il vient d'etre question se rapportent au systeme cubique fi faces centraes. L'autre groupe est caract6ristique du syst6me hexagonal compact obtenu sous une forme m6tastable. Ce syst6me poss6de une masse optique tr6s 61ev6e, ce qui implique que la surface de Fermi vient en contact avec les limites de la zone de Brillouin. Les spectres intrabandes des deux syst6mes s'6cartent notablement de ceux auxquels on peut s'attendre en partant de la formule de Drude. Le temps de relaxation varie beaucoup avec l'6nergie, en particulier aux basses temp6ratures, dans le domaine des 6nergies sup6rieures fi 0,6 eV. C o m m e le montre la Fig. 6, du c6t6 des faibles +nergies la plupart des auteurs observent une absorption plus forte que celle pr6vue th6oriquement. Ceci peut s'interpr&er dans le cadre de la th6orie de Drude, comme l'ont fait Myers et Sixtensson 56 et Stevenson 58, mais il est possible aussi, par analogie avec ce qui se passe d'apr6s Rasigni et al. 53 pour des d6p6ts granulaires de lithium, que cette absorption suppl6mentaire soit li6e fi la rugosit6 de la surface de certains d6p6ts.

* Les r6sultats de Myers et Sixtensson report6s sur la Fig. 5 correspondent ~il'une des couches etudi6es par ces auteurs. Ces derniers n'ont en effet pas pu relier les propri6t6s optiques de leurs d6p6ts et les conditions de pr6paration correspondantes.

PROPRII~TESOPTIQUESDES METAUXALCALINS

317

~0"~( lO~'~/sec

I

No

0", (10~/sec }

solide

,

0

2

4

8

0

?:4-.,---,--.,2 4

6

. . . . . 10a CeV)

Fig. 5. Conductivit6 optique du sodium solide dans le domaine s'&endant de 0,7 ~ 10 eY. La courbe en

trait plein la plus basse correspond ~ila contribution th~orique des transitions interbandes. Les r~sultats exp6rimentaux sont report6s comme suit: A, Smith9; ©, Palmer et Schnatterly21; [-1, Sutherland et al.3° ; &, Duncan et Duncan ~; e, Ives et Briggs6; II, Mayer et El Naby*°; x, Sutherland et al.3 Fig. 6. Conductivit6 optique des d6p6ts opaques de lithium: r6sultats exp~rimentaux de RasignP s, T = 6 K ( - - - ) , Myers et Sixtensson~6, T = 15 K (O), Mathewson et Myersa3, T = 140 K (•), T = 298 K (ll) et Inagaki et a l ) a, T = 293 K (e); courbes th6oriques pour trD (. . . . ), a I (------), Re[a] ( - - ) . (D'apr~s RasignP~.)

Une explication theorique bas6e sur cette derni6re hypoth~se a 6t6 propos~e par Berreman 59 et par Fedders 6°. Par ailleurs, rexcitation d ' u n plasmon de surface h 4,75 eV peut ~tre ~ l'origine d'une absorption suppl~mentaire dans le d o m a i n e d'6nergies phot.oniques compris entre 2 et 5 eV. 3. CONCLUSIONS La d+termination des param&res optiques caract6risant les m & a u x alcalins, dans le domaine d'6nergies photoniques s'~tendant de 0 fi 80 eV, n'est pas, malgr+ de s+rieux progr6s r6cents, un probl~me que l'on peut actuellement consid6rer c o m m e enti+rement r6solu. Certes, dans certaines conditions exp6rimentales et dans des domaines d'6nergie d6termin6s, il y a, en d6finitive, un bon accord qualitatif et parfois m6me quantitatif entre les r+sultats obtenus avec des couches opaques par les diff6rents auteurs. La bande anormale de Mayer, qui a suscit6 tant d'hypoth6ses th~oriques audacieuses, parait avoir trouv6 une explication simple dans le couplage, grgtce aux rugosit+s de surface, du c h a m p ~lectrique de l'onde +lectromagn&ique incidente avec les oscillations de plasma de surface. Les r+sultats exp6rimentaux les plus r~cents confirment que les m6taux alcalins ont un spectre optique simple qui s'accorde, dans l'ensemble, assez bien avec les th6ories 61~mentaires dans le cadre de r a p p r o x i m a t i o n ~ un ~lectron. Les d~saccords qui subsistent peuvent tenir, tout d ' a b o r d , au fait que les couches, m~me tr~s 6paisses, obtenues par 6vaporation et condensation sur un support n ' o n t probablement pas, dans l'~tat actuel des techniques de preparation et d'6tude, des propri6t6s rigoureusement identiques fi celle du m6tal massif monocristallin et pur. Ils peuvent aussi 6tre dos au fait que la surface utilis6e pour les mesures n'est pas rigoureusement plane et n o n alt6r6e cristallographiquement ou chimiquement.

318

P. ROUARD

I1 semble que la surface support-mdtal, qui parait mieux protdgde des alterations (saul dans le cas off le m6tal attaque le support) et dont la plan6it6 est gdndralement meilleure quc celle de la surface m6tab vide, convienne mieux, le plus souvent, pour l'obtention des mesures exactes et pr6cises. II reste, cependant, que l'influence du"support n'est pas toujours n6gligeable, surtout lorsqu'on a affaire/~ du lithium, m&al particuli6rement rdactif, comme le montre l'6tude comparative rdalis6e par Mathewson et Myers 43 avec le lithium ddpos6 successivement sur du quartz et sur du saphir. De plus, l'utilisation de cette surface support-mdtal impose des contraintes. Elle a par exemple oblig6 Smith, dont les r6sultats se rapprochent le plus de ceux prddits par les thdories 61+mentaires, fi opdrer avec des couches dont il luttait contre l'6vaporation pendant les mesures en continuant fi d6poser du mdtal pendant route la dur~e de celles-ci. Quelle est, dans ces conditions, la structure interne exacte des couches laquelle, comme l'a montrb Hunderi 64, agit fortement sur leurs propridtds optiques ? Le d6p6t des couches sur supports tres refroidis (6-15 K) et ensuite leur recuit fi 288 K ont permis fi Myers et Sixtensson 5° d'obtenir, pour le lithium, dans certains cas des r6sultats eux aussi assez proches des pr6dictions des th6ories 61~mentaires, en utilisant pour les mesures la surface mdtal-air. Ces auteurs pensent que les surfaces des dep6ts ainsi prepares, utilisdes pour les mesures, sont parfaitement planes, ce qui assure une bonne utilisation de la m6thode elli.psom&rique. Qu'en est-il, apr6s un long recuit, marne sous vide tr6s pouss6, de l'&at de puret6 de la surface? N'est-elle pas au moins partiellement oxydde et ceci n'expliquerait-il pas, en partie, les rdsultats variables de ces auteurs? Une &ude tr6s soignbe, dans chaque cas, de la dire surface, par exemple au moyen d'une exploration au microdensitom&re d'une photographie de sa r6plique au carbone selon la technique utilis6e par Rasigni ~5, pourrait apporter de pr6cieux renseignements fi ce sujet. D'un autre c6t6, en l'absence de recuit les couches d6pos6es sur support tr6s refroidi peuvent pr6senter de nombreux d6fauts internes provoquant des variations notables du spectre de la conductivit& Enfin, en ce qui concerne le lithium, il serait aussi d6sirable, dans chaque serie d'expbriences, de d&erminer soigneusement fi quel syst6me cristallin appartient le m&al des couches 6tudi6es et de disposer de calculs th6oriques concernant le syst6me hexagonal compact qui apparait au-dessous de 70 K. Tout ceci am6ne fi penser que l'accord entre th6orie et exp6rience passe d'abord par une am61ioration de l'exactitude et de la prdcision des r6sultats exp6rimentaux car, malgr6 les progr~s r+cents, ces derniers ne sont probablement pas encore absolument repr+sentatifs du m6tal massif pur ayant une structure cristallographique bien connue, pour lequel sont effectudes les calculs th6oriques. Les travaux entrepris avec des couches m6talliques, minces ou 6paisses, pour 6valuer l'influence du degr6 de rugosit6, d'alt6ration ou de cristallisation de la surface utilis6e pour les mesures sur les propriat6s optiques, ou ceux engag6s avec les couches granulaires pour d&erminer les cons6quences de la forme et de la grosseur des grains sur les m~mes propri&~s, sont, fi ce titre, int6ressants et importants. Ce n'est que lorsque cette am61ioration aura 6t6 r6alis6e qu'il sera possible de dire si l'explication des r6sultats exp6rimentaux entre darts le cadre de l'approximarion fi un 61ectron, s'il faut tenir compte dans une certaine mesure de l'interaction de Coulomb entre les 61ectrons, s'il faut am61iorer les d6finitions du pseudo-

PROPRIf/TI~S OPTIQUES DES MI~TAUX ALCALINS

319

potentiel et de la fonction d'onde, ou s'il est n6cessaire d'imaginer de nouvelles th6ories plus ~labor~es. REFI~RENCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

P.O. Nilson, Solid State Phys., 29 (1974) 140. P. Rouard et A. Meessen, Prog. Opt., 15 (1977) 77-137, P. Rouard, Thin Solid Films, 34 (1976) 303. D. Mal~ et P. Rouard, J. Phys. Radium, 14 (1953) 584. R.W. Duncan et R. C. Duncan, Phys. Rev., 1 (1913) 294. H.E. Ives et B. Briggs, J. Opt. Soc. Am., 26 (1936) 238-247; 27 (1937) 181. J.N. Hodgson, J. Phys. Chem. Solids, 24(1963) 1213; Phys. Lett., 7(1963) 300. H. Mayer et B. Hietel, dans F. Abel6s (~d.), Proc. Int. Coll. on Optical Properties and Electronic Structure of Metals and Alloys, Paris, North-Holland, Amsterdam, 1966, p. 47. N.V. Smith, Phys. Rev., Sect. B, 183 (1969) 633 ; 2 (1970) 2840. R.E. PalmeretS. E. Schnatterly, Phys. Rev.,Sect. B, 4(1971)2329. J. Monin, Acta Electron., 16 (1973) 139-173; Phys. Rev., Sect. B, 9 (1974) 1309. R. Payan, Ann. Phys., 4 (1969) 543-560. A.M. Wilson, The Theory of Metals, Cambridge University Press, Cambridge, 1936, p. 133. P.N. Butcher, Proc. Phys. Soc., London, Sect. A, 64 (1951) 765-772. M.H. Cohen, Phys. Rev. Lett., 12 (1964) 644; et dans F. Abel,s (~d.), Proc. Int. Coll. on Optical Properties and Electronic Structure of Metals and Alloys, Paris, North-Holland, Amsterdam, 1966, p. 66. M.H. Cohen et J. C. Phillips, Phys. Rev. Lett., 13 (1964) 190. A.W. Overhauser, Phys. Rev. Lett., 13 (1965) 196; Phys. Rev., 156 (1967) 844-850. R.A. Ferrel, dans F. Abel6s (~d.), Proc. Int. Coll. on Optical Propertie~ and Electronic Structure of Metals and Alloys, Paris, North-Holland, Amsterdam, 1966, p. 78. S. Nettel, Phys. Rev., 150 (1966) 421. N.V. Smith, Phys. Rev., 163 (1967) 552. R.E. Palmer et S. E. Schnatterly, Phys. Rev., Sect. B, 4 (1971) 2329. A. Meessen, J. Phys., 22 (1972) 135. H. Mayer et S. Von Aufschnaiter, Z. Phys., 249 (1972) 400. H. Mayer et L. D. Blanaru, Z. Phys., 249 (1972) 424. H. MayeretB. Hietel, Z. Phys.,254(1972)232. H. Steffen et H. Mayer, Z. Phys., 254 (1972) 250. B. Hietel et H. Mayer, Z. Phys., 264 (1973) 21-38. J.C. Payan et D. Roux, Opt. Commun., 11 (1974) 181. R. Althoffet J. H. Hertz, Infrared Phys., 7 (1967) 11. J.C. Sutherland, E. T. Arakawa et R. N. Ham, J. Opt. Soc. Am., 57 (1967) 645 ; 58 (1968) 1080. J.C. Sutherland, R. N. Ham et E. T. Arakawa, J. Opt. Soc. Am., 59 (1969) 1581. U.S. Whang, E. T. Arakawa et T. A. Calcott, Phys. Rev. Lett., 25 (1970) 646; J. Opt. Soc. Am., 61 (1971) 740. U.S. Whang, E. T. Arakawa et T. A. Calcott, Phys. Rev., Sect. B, 6 (1972) 2109. S. Yamaguchi et T. Hanyu, J. Phys. Soc. Jpn, 31 (1971) 1431. B.I. Lundqvist et C. Lyden, Proc. Electronic Density of States Syrup., NBS, U.S. Govt. Printing Office, Washington D.C., 1969, p. 69. J. Hermanson, Phys. Rev., Sect. B, 6 (1972) 400. W. YTChing et J. Callaway, Phys. Rev. Lett., 30 (1973) 441. T. Inagaki, L. C. Emerson, E. T. Arakawa et M. W. Williams, Phys. Rev., Sect. B, 13 (1976) 2305. T. lnagaki, L. C. Emerson, E. T. Arakawa et M. W. Williams, Phys. Rev., Sect. B, 13 (1976) 5610. H. Mayer et M. H. El Naby, Z. Phys., 174 (1963) 289. W.Y. Ching et J. Callaway, Phys. Rev., Sect. B, 11 (1975) 1324. J.N. Hodgson, dans F. Abel,s (6d.), Proc. Int. Colloq. on Optical Properties and Electronic Structure of Metals and Alloys, Paris, North-Holland, Amsterdam, 1966, p. 60. A.G. MathewsonetH. P. Myers, Phys. Scr.,4(1971)291;Philos. Mag.,25(1972) 853.

320

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

P. ROUARD

M. Rasigni et G. Rasigni, J. Opt. Soc. Am., 62 (1972) 1033. J. B6senberg, Phys. Lett A, 41 (1972) 185. J. B6senberg, Z. Phys. Chem., Abt. B, 22 (1975) 261. T.A. Callcott et E. T. Arakawa, J. Opt. Soc. Am., 64 (1974) 839. M. Rasigni et G. Rasigni, J. Opt. Soc. Am., 63 (1973) 775. M. Rasigni, J. P. Palmari et G. Rasigni, Surf Sci., 50 (1975) 229. M. Rasigni, G. Rasigni et J. P. Palmari, Philos. Mag., 31 (1975) 1307- 1325. M. Rasigni et G. Rasigni, J. Opt. Soc. Am., 66 (1976) 826. M. Rasigni, J. P. Gasparini, G. Rasigni et R. Fraisse, Solid State Commun., 18 (1976) 629. M. Rasigni, G. Rasigni, J. P. Gasparini et R. Fraisse, J. Appl. Phys., 47 (1976) 1757. M. Rasigni et G. Rasigni, J. Opt. Soc. Am., 67 (1977) 54, 510. M. Rasigni, Th~se, Universit~ d'Aix-Marseille Ili, 1977. H.P. MyersetP. Sixtensson, J. Phys. F, 6(1976)2023. J.P. Marton, Appl. Phys. Lett., 18(1971) 140. D.J. Stevenson, Phys. Rev., Sect. B, 7 (1971) 2348. D.W. Berreman, Phys. Rev., 163 (1967) 855; Phys. Ret,., Sect. B, 1 (1970) 381 ; J. Opt. Soc. Am., 60 (1970) 499. P.A. Fedders, Phys. Rev., 181 (1969) 1053. J.P. PerdewetS. H. Vosko, J. Phys. F, 4(1974) 380. W.Y. Ching et J. Callaway, Phys. Rev., Sect. B, 9 (1974) 5115. A.O.E. Animalu, Phys. Rev., 163 (1967) 557. O. Hunderi, Phys. Rev., Sect. B, 7 (1973) 3419.