656
ACTA
METALLURGICA,
VOL.
4,
D’apres
lui,
diffraction
X
spon~aient cristaux
1956
les
fragmentations
obtenues
des
dans les deux
taches
pas au mQme ph~nom~ne.
d’aluminium
polygoniseraient Nous voudrions
Des mono-
t&s pur faiblement
uniquement
de
cas ne corredeform&
vers 630°C.
p&ciser exactement
notre point de
vue. 11 est d’abord
certain
que la methode
que nous
avons proposee(3)
pas&de une sensibiliti sup&ieure B celle de Guinier-Tennevin.c4) M. de Beaulieu peut
FIG. 3. Spscimen subjected to shear parallel to grain boundary. Voids have developed along grain boundary. Conditions: 600 p.s.i., 482”C, 20 hours in H,, as polished, x 150.
the boundary
for 10 hours at 1200°F.
series of specimens, parallel stress,
shear traction,
to the boundary, applied
For a third
applied
was succeeded
as above,
normal
as before by tensile
to the boundary.
The results of the tests were, that with shear alone some
voids were found
along
the
boundary.
With
tension alone, no voids were found at the boundary. With
shear, followed
found
along the boundary.
and etching
by tension,
techniques
were used.
are shown in Fig. 3. It is apparent, therefore, necessary
condition
line voids
(cracks).
were performed mechanism,
many
that boundary
shear is a
our experiments
to a knowledge
of Gifkins’s
and do not serve to distinguish
simple experiments
results
of intercrystal-
Unfortunately,
his concept,s and ours.
between
We are now performing
to so di~erentiate.
it is apparent that grain-boundary
were
polishing
Typical
for the formation
prior
voids
Both diamond
some
In any ease,
sliding is a necessary
prerequisite in order to obtain intercrystalline
cracking.
School of Mines,
C. W. CHEN
~olurnbia I.:niversity,
E. S. MACHLIN
New York 27, IV. Y.
difficilement
dans
ses aristaux
des
sous-
11 lui est done impossible ments
thermiques
de asvoir si, pour les traite-
effect&s
& des
temperatures
infdrieures B 630”, une sous-structrue pas deja presente.
pIus fine n’est
En fait, memo dans des cristaux
moins purs, nous avons trouve des stries nettes dans les taches de diffraction
enregistrees
apres une deformation avons
faible
immediatement
(quelques
pu suivre leur evolution
%) et nous
apres divers
traite-
ments thermiques. Nos observations
peuvent se resumer de la man&e
suivante. 1. En-dessous
d’une
certaine gamme
de tempera-
tures, les sous-grains form& directement a la tempgrature ordinaire (sans intervention du processus thermiquement active de Cahn) ne semblent pas croitre
d’une
man&e
Blimine progressivement a cot& des continues. identifie
importante. La matrice les courbures locales presentes
sous-grains
parfaits
et plus
ou moms
Ce mecanisme peut &ire probablement B Ia diffusion et & la r~organisation des
dislocations,
c’est-a-dire
a ee que l’on appelle generale-
ment la “polygonisation.” 2. Au-dessus de ces temperatures (variables suivant la pure% du metal, de la deformation, etc.), une croissance reguliere de certains individus se dkveloppe
References
avec conservation
1. R. D. GIFKINS Actn Met. 4, 1955. 2. C. W. CHEN and E. S. MACHLIN
On the Mechanism of Intercrystalline Fracture, to be submitted to A.S.M. 3. C. ZENER The Micro-Mechanism of Fracture. Fracturing of Metals, A.S.M. (1947), p. 3. 4. H. C. CHANQ and N. J. GRANTMechanism of Intercrystalline Fracture Journ.aEof Metals February, 1956. * This research was supported by the United States Air Force through the Wright Air Development Center. Received April 25, 1956.
chacun
des
Au Sujet de la Mise en Evidence de la Polygonisation de 1’Aluminium par la Methode des Rayons X et par la Micrograp~ie~ Xous le m&me titre, M, de Beaulieu
a recemment
obtenus au laboraavec 110s propres
dune haute perfection
interne pour
sous-grains.
Dans les cas observes, cette &ape se deroule dans une matrice deja entierement polygonisee et peut 6tre citracterisee simple processus de croisssnce.
par un
3. Par contre, an voisinage du point de fusion, une sous-structure b larges domaines moins parfaits se forme
quelquefois
l’aluminium);
compare les importants resultats toire du Professeur Chaudron observations.(2)
detector
grains d’une taille inferieure au dixieme de millimetre.
(aussi bien dans le fer que dans
Cet &at
nous parait
correspondre
B
ce que Crussardc5) a appele “recristallisation in situ.” 11 est probable due les observations de M. de Beaulieu se rapportent b cet &at. Quoi qu’il en soit, nous n’avons jamais observe la formation de ces grands sous-grains imparfaits directement & partir de cristaux ne contenant pas au prealable une sousstructure L caractere parfait. 11 importe de remarquer
LETTERS
qu’une
telle
observation
requiert
TO
une technique
THE
657
EDITOR
a
haute sensibilite. Enfin
le
caractitre
peut Btre clairement
stable
de
l’etat
polygonis
illustre par le fait queles
cristaux que nous avons examines pas L l’etat solide.
mono-
ne recristallisent H. LAMBOT.
Laboratoire de Cristallographie UniversitC de Likge (Belgique) et Centre National de Recherches Metallurgiques
(LiLge) REFERENCES
1. C. DE BEAULIEU Acta Met. 4, 100 (1956). 2. H. LAMBOT, L. VASSAMILLET, et J. DEJACE Acta
Mel.
3, 157 (1955). 3. H. LAMBOT. L. VASSAMILLET. et J. DEJACE Acta Met. 1, 711 (i953j. 4. A. GUINIER et J. TENNEVIN Acta CT@. 2, 133 (1949).
FIG. 1. Pure iron lightly etched.
8,000 x .
5. C. CRUSSARL) Rev. MetaZZ. 45, 317 (1944). * Received
tungsten oxide, generally under an angle of 45”. The electron microscope used was that of the E.M.
April 27, 1956.
Division
Investigation of Pure Iron and Soft Steel with the Electron Microscope*
T.N.O.
of
the
Technical
and
T.H.
at Delft.
Physics We
Department
thank
Dr.
J. B.
le Poole for his kind help.
Introduction Experimental
The Research on pure metals is of great theoretical importance.
The two most interesting
the verification of slip.
advantage
kindly the
marks, The
Physical
a pure
purity. by Prof.
etching,
clearly
the crystallites effect
could
Laboratory showing
at
the
on soft
of
Eindhoven. a method
substructure
and to see whether
be obtained
is
Samples were J. D. Fast
The scope of this research was to develop of
metal
arise from precipitates dissolved atoms. The
is of 99.99%
put at our disposal
Philips
The method
theory and the mechanism
obvious, as no complications and less complications from iron investigated
are
of using
dislocation
The
subjects
of
the same etch
steel,
Moreover,
etched specimens were deformed to examine the effect
of etching
Results
used gives as a rule etch
which are protruding from the surface. subboundaries in the ferrite crystallites form
small dikes, and this makes it reasonable to suppose that, though generally etch pits mark the location of dislocations, indicate
the etch
marks
found
in our case
the site of dislocations.
A reason for the etch figures being hills rather than holes might be that
there
are
concentrate of attack,
still
interstitial
atoms
around the dislocations as Dr. J. Nutting
present,
which
and lower the rate
of ‘Cambridge,
U.K.,
suggested to us. Figs. 1 and 2 show the result of a light etching, that
of slip. Experimental After preliminary
Method
experiments,
we decided
to use
an electrolytic polish etch, which has the advantage that no deformation results from preparation. A commercial
apparatus,
the Disa Electropol,
with a bath on a perchloric-acid by which aluminum The
method
of
was used
base (Electrolyte
A-2),
was etched beforehand. replication
used
is as follows.
First, a negative silver replica is made by evaporation of silver in vaccum onto the specimen. This replica, of about 7-,a thickness, is easily removed from the specimen. A second positive replica is deposited on the first by evaporation of carbon in vacuum. After dissolving the silver in nitric acid, washing and drying of the carbon replica, the replica is shadowed with
FIG. 2. Pure iron lightly etched.
16,000 x .
!