Relation entre la ségrégation des impuretés et l'autodiffusion inter granulaire dans le fer

Relation entre la ségrégation des impuretés et l'autodiffusion inter granulaire dans le fer

LETTERS TO THP: EDITOR compression 69 I was noticed. A slight ditference between the initial curves in compression proved and in tension was ...

1MB Sizes 0 Downloads 43 Views

LETTERS

TO

THP:

EDITOR

compression

69 I

was noticed.

A slight ditference between

the initial curves in compression proved

and in tension was

to be due to buckling:

specimens

were particularly

to which

t’he nickel

susceptible.

Acknowledgments The author Rathenau

is much indebted

for his stimulating

to Professor

interest.

tion of the material was determined and his staff of this laboratory. Mr. J. Raadsen,

by Mr. J. Kroonen

The able assistance of

Mr. J. N. Helle and Mr. D. de Graag

during the experiments

was much appreciated. A. TV.

lionilbkltjke

Fig. 2. Xcrocraok formed at O’C 400 x magnifirittion. rwgativr 3 x enlarged.

Becker(G)).

Although

a detailed

t’hat the micro-cracks

tensile plastic

deformation

this movement, induction. formed

in

thus causing a falling-off

If in addition

we assume

tension

be

may

The difference mechanical ductile-brittle

transition

that

without

with this concept.

plastic

it shon-s

the

in tension

well with the known

temperatures

below

temperature

temperature

preceding

compression

at

iron

in

breaks

deformation. usual

in

increases

with

of a Griffith

stable

Grifith

increasing

stress

crack

crack requires

ideas

mentioned

opened

only with up.

A

more stress if it is to

that creation

of vacancies

to check

It was initially might

the

surmised

play the principal

r81e in explaining the phenomena. Keeping plastically deformed specimens for 2 months at 120°C did not, however,

introduce

induction. Jt was realized

any

change

8.

Relation entre la sCgrCgation des impure& et l’autodiffusion intergranulaire dans le fer* Differentes

etudes,

in

the

magnetic

was thus far made of the occurrence

no mention

of microcracks

determiner

laire des impuretes. Bmis

l’hypothese

ou exp&rimentales,

perturbee

des joints de

la segregation

intergranu-

Ainsi ,llcLean et Northcott’r) de

segr6gations

ont

intergranulaires

d’atomes de solute, meme aux temperatures sup6rieures B la temperature

limite de solubilite.

On sait d’autrc

part que la structure des joints depend non seulement de I’orientation aussi

t,hat in the literature

theoriques

ont sugger6 que la structure grains pouvait

were performed

above.

5. 6. 5.

in

be opened up further (Cottrell(*)). A fen- experiments

3. 4.

phenomena

is consistent

being

,“.

tension

(Lo&i’). The finding that the decrease of permeability t,he idea

the

tension.

whereas

yield

References 1.

during

enumerated

behaviour

correlates

behaviour

a crack

closed

points

in magnetic

and in compression

to

of magnetic that

partly

it

during

may act as obstacles

compression, the subsequent above are seen to be compatible

Below

created

SLEIWVYK

Shell-Laboratori/l’n/

Amsterda,m

model is lacking,

is conceivable

G. iV_.

The composi-

de

relative

I’orientation

des cristaux du

reseaux des grains adjacents.

,joint

par

contigus,

mais

rapport

aux

En consequence,

plus

la st,ructure des joints cst pert,urbce (joints s6parant

at temperatures higher than about -90°C. Fig. 2 is a microphotograph of a crack on the surface of an Armco ingot iron specimen that had been successively

des cristaux de forte d&orientation). et plus la tendance a la segregation dcs impure& doit 6tre prononc6e.

electropolished,

nous avons compare

annealed

at’ 960°C and strained

to

4O/‘0 in tension at 0°C. A small number of nickel specimens was tested in the same manner as t’he iron: no restorative effect of

Pour obtenir une preuve directe de cette hypothesc, les phbnomitncs

d’autodiffusion

intergranulairc. a ceux de pr6cipitation d’un solute dissous k unc teneur nettement infirieure & la limite Les techniques autoradiographiqucs dc solubilitc.

692

ACTA

METALLURGICA,

171~. 1. Diffusion pr&fkentiolle de fer radiomctif dans un kchantillon de fer recuit 8. 700°C. Autoradiographio G = 50 obtenue :tp&s abrasion de 10~. G = 50 E’x. 2. M&me plage sprks abrasion de 30,u. YIP. 3. Autoradiogrnphie montrant la diffusion p&f&entie110 de ferradioactif danslessous-jointsdepolygollisation G = 50 d’un for pur (recuit de 66 h B iOOT).

VOL.

7,

1959

FIG. 4. Nicrogritphic d’una plage dr fixrcontenant 0,005%, (: ~: 40 de souf’re radioactif. FIG. 5. Wgl$gRt,ion du souf’re radiowtif’ dans 1~s joints dr la m&me plage observbe JSI~ :Lu~orw,cliographie. G ~ 40 prkfPrant,ielle drr for rudioacM FIG. 6. dutodiffusion dans les joints do la mBme pla,ge (rrcwit do 66 h it 700°C). c: = 10

LETTERS

permettent

seules

par

1’Btude de phkomknes

leur

THE

693

EDITOR

d’aborder

qui intkressent une Bpaisseur

de metal nettement infkieure des autres techniques

sensibilitk

TO

au pouvoir de rksolution

expkimentales.

Les autoradiographies (Figs. 1 et 2) montrent en effet l’autodiffusion pr6firentielle du fer radioactif (mklange de Fe55 + Fe5g) dans les joints de grains d’un Bchantillon de fer inerte apr&s un recuit de diffusion de 74 h ?I 700°C. fer

radioactif,

Aprbs dissolution des

du dBp6t initial

autoradiographies

de

effect&es

B

diffkrents niveaux paralkles & l’interface montrent une diffirenco

de p&&ration

fois dc l’orientation

tion propre du joint.‘“) de macle coherent joints

intergranulaire

fonction

Elle est t&s faible dans un joint

et tr&s j’aihle

aussi

dam

les sous-

comme le montre la Fig. 3.c3)

de polygonisation

Dans unc autre s&ie d’exphriences,

on ajoute & un

fer pur unc teneur totale en soufre radioactif nettement

k la

des rkseaux contigus et de l’orienta-

(0,005“/‘)

infkrieure B la limite de solubilitk actuelle-

ment admise (0,02:{,

k 900°C).

PIG. S. Mkna plage, attaquke avrc une solution d‘aride m~t;lnitrobenz8ne_sulfonique dam l’bthanol. ks trace rroircs correspondent BUX nnriens joints. c: : 7.i

prononckc,

Apr&s recuit de 16 h

c’est & dire les joints de grains de plus forte

R 75O”C, puis de 32 h h 870°C et refroidissement

lent

d&orientation. Nous avons enfin Btendu ces observations

jusqu’k

uni-

joints y du fer.

WC,

formbment

graphie

primitivement

rkparti

dans la structure brute de coulke du m&al

se rassemble structure

le soufre

dans les joints.

micrographique

La comparaison

de la

(Fig. 4) et de l’autoradio-

de la m&me plage

(Fig.

5) montre

soufrc rw s‘est pas prGcipit@ uniform&lent

que le

les ,joints de grains. Lorsquc indkelable. d+o&

awns

du soufre

est devenue

sur ce m&me Bchantillon

graphie

(66 h k 700°C)

comparable

celui ayant donnb les autoradiographies

montre

la

aux traces

B

joints

qui sont frkquents

joints

oil l’autodiffusion

int,ergranulaire

est la

plus

dans l’alcool

l’image

dir&c

de

l’orientation joints

puretb

a k% prBfbren-

Ies contours

dans l’austbnite

de rnacles

n’appara,isscnt ni

sur

ni

l’irnage

ces experiences apportent unc preuvc des

des joints

et des cristaus

de

d&orientation correspondent

sensible

mbtsnitro-

Bthylique) rdvkle quc

l’influence

l’autodiffuaion les

d’acidc

autoradiographique.

micrographique. En ronclusion,

fer

est surt,out localis@ dans les

8). Par contre,

sur

du

La m&me plage

de grains y oh l’autodiffusion

tiellet5) (Fig.

skgr@gation cn soufre correspondent

les

prkf&entiellc

(solution

pm

l’autoradio-

avec un r&a&if chimiyue

d’impuret&

2. La Fig. A montre aussit6t qu’aux joints j, plus forte pr6ci&ment

diffusion

Aprks

du fer

de fer ra,dioactif,

la rkseau des impuretbs

des Figs. 1 et

intergranulaire.(*)

radioact,if dans les joints y (Fig. 7).

benzene sulfonique

dufw radioactif et effect& unrecuit de diffusion

B basse ternphrature

d’un dBp6t

au cas des du domaine

de 100 h B 1000°C effectuG sur

repolie et attaquee

la radioactivitk now

y, il y a aussi autodiffusion recuit

recouvert

dans tous

Dans la partie infirieurc

paramBtres

et la &gr@gation grains.

Aux

d6finissant contigus

des impuretPs joints

de

plus

sur dans forte

en phase a. comme en phase y lcs plus fortes concentrations d’im-

s@gr6$6es.

Bibliographie

Frc:. 7. Autodiffusion prtYbrent~irlle dam fer rccuit 100 h B 1000°C.

les joints

y d’un G = 75

1. D. RloLmx ct L. NORTHCOTT, J. Imt. Metds 72, 5X3 (1946). 2. et P. LACOMBE. Rev. Nt+. 54. 653 (1957). _. C. _. T>P.Y\~~NIE __~_.~ 3. P. COULOMB, C. LEYXONIE et P. L,WOiMsE,i'. R:Aml: sci., Pwis 246, 1209 (1958).

ACTA

(i!H

METALLURGIC

A . VOL.

7.

1959

4. S. %. BOGSTEIN, S. T. KISECHINet L. N. MOROZ. (“orlf&vw I~afwwarrtio~mlrBUT Ien Rnrlioisotopes U.K.E.S.C.0. Paris (19.57) ;?Emoire RIG/193. .‘,. 1’. (:OCLOXB et P. LACOMBE. Rev.Xc%. 55,918 (l%%).

'I' lbrrnived

Cracks

hley 5, 1959.

due to the piling-up

two intersecting

of dislocations

slip planes in MgO

on

crystals*

In MgO crystals, two types of crack have been reported.(ls2) One was associated with the Stroh mechanism,(l)

and

mechanism.(2)

The purpose of this communication

the

other

to report the observation

with

the

Cottrell is

of a new type of crack in

MgO and LiF crystals and to propose a mechanism for the initiation

of such a crack.

In 19.58 Cottrrll(3) suggested nucleation

a mechanism

of cleavage cracks on

(100) planes in b.c.c.

structures due to the coalescence of dislocations intersecting observed tests.

slip

planes.

This

type

in MgO by Washburn The

dislocation

of

reaction

on two

crack

et CA.(~)

was

in tension

involved

in

this

process in a structure like MgO is shown schematically in Fig.

1 and can be represented

YIG. 2. Crack formation

for the

by the following

vector equation: + $a.[OiT] = a[OTO]

(1)

cryst,als.

In Fig. 2, two slip planes (011) and (101) intersect along the (1x1) axis and make each other. slip vector

angle of 120” with

an

If we consider a dislocation

loop with a

$a[Oil J)on the (011) plane and another loop with vector v(v = &[lOi])on the (101) U(U =

plane, then the sections O,P, and O,P, parallel to the line of intersection dislocation

@[Oil]

OII C110)plane in XgO

combine

together and form a new

OP with a Burger’s

This dislocation

vector

reaction can be written

P = &u[liO]. as

u

+

v

=

r,

01'

However.

in contrast

struct,ure considered

with the case of the b.c.c.

by Cottrell, there is no change of

elastic energy in the above reaction. Nevertheless,

it’ can be shown that in crystals like

11g0, a different type of dislocation

reaction is more

favorable

$a.[oii] + ',a[1011 = +a[lio] It’ is to be noticed Therefore, reaction

this (1).

t’han reaction (1) above. If this reaction operates, it will lead to a crack on the slip plane (110) understood components instead of the usual cleavage plane. It is to be noticed

that this type of crack is different Stokes et rrl.“) observed piling

up

of

that

in so combining

the

elastic

reaction

is

This reaction by

more

is

the

the two released.

favorable

can probably

considering

of the individual

energy

edge

than

be better and

screw

dislocations :

from that which

in compression

dislocations

half

dislocations.

(4)

against

tests, where a

a kink

band

is

involved.

The first term in each reaction is the edge component, and the second term the screw component.

As shown

in Fig. 3> the two screw components and the edge components

cancel each other combine together. This may

be represent’ed bp the following

Flc,. 1. (‘rack

formation on (010) 11go crystals.

cleavage

plane

in

two

equations:

Therefore the elastic energy due to the coalescence

of